Page 1 of 4

C# & XNA: Arrays, Part 2
Part LISTNUM NumberDefault \l 1 Try out the sample finished
Download the .Zip for today, and try out the finished project.

Part LISTNUM NumberDefault \l 1 Making the Walls Destructable
The first thing you should do is notice that when you push the ‘B’ button, the bug now shots a laser, too.
Next, we’d like to use another array, to keep track of which walls are still on-screen. We’ll do this using a ‘parallel array’ – a second array of bools that is ‘parallel’ to the original array of wall positions.
You’ll need to do the following:

· Add an array of Booleans to keep track of ‘is this wall active?’:

· bool[] arr_drawWall;
· Specify how many Booleans to create, and then give them the value ‘true’, to indicate that all the walls start out active:
Since we’re basing the active walls array on the length of the other array, make sure to put this one second!!
· arr_activeWalls = new bool[arr_PositionWalls.Length];
for (int i = 0; i < arr_activeWalls.Length; i++)
{
 arr_activeWalls[i] = true;
}
· When moving the laser, figure out if we overlap with any of the walls (and if so, deactivate that wall):
#region move the laser, if it's in play

if (drawLaser == true)

{

 m_PositionLaser.Y = m_PositionLaser.Y + m_velocityLaser.Y;

 if (m_PositionLaser.Y > WorldMax.Y)

 {

 drawLaser = false;

 }

 // check for collision with any of the walls:

 Vector2 laserWallDistance;

 for (int i = 0; i < arr_activeWalls.Length; i++)

 {

 laserWallDistance = m_PositionLaser - arr_PositionWalls[i];

 if (laserWallDistance < OVERLAP_DISTANCE)

 {

 arr_activeWalls[i] = false;

 }

 }

}

#endregion

· Don’t forget to update the collision detection of the bullets so that they only collide with active walls!

· In order to do this, when you’re checking for overlap (in your Controller code) between the bullets & the walls, you should add in an extra if statement that makes sure the wall is active.
· Update the View code so that we only draw the active walls:
// Draw the walls

for (int iWhichWall = 0; iWhichWall < arr_PositionWalls.Length; iWhichWall++)

{

 if(arr_activeWalls[iWhichWall] == true)

 DrawRectangle(arr_PositionWalls[iWhichWall], WALL_WIDTH, WALL_HEIGHT, 0.0f /*rotate */, Color.White, Color.White, @"Wall");

}

Part LISTNUM NumberDefault \l 1 Allow for multiple laser shots at once
We’d like to set things up so that you can have multiple laser-shots on screen at once. We’ll do that using (yet another) array. In fact, we’ll use a pair of arrays – an array of bools to track which lasers are active, and an array of positions, to track where they are. We’ll assume that all lasers travel in the same direction & with the same speed, so that we can share a single velocity vector amongst them.
You’ll need to do the following:

· Create a constant to track how many lasers we want to allow:
· private const int MAX_NUM_LASERS = 5;
· Add the two arrays.
Since we’re replacing drawLaser with the arr_activeLasers, make sure to go through & remove any references to drawLaser from your program!
· bool[] arr_activeLasers;
Vector2 [] arr_PositionLasers;
Vector2 m_velocityLaser;

· Initialize the two arrays:
· arr_activeLasers = new bool[MAX_NUM_LASERS];
arr_PositionLasers = new Vector2[MAX_NUM_LASERS];
// lasers start out being inactive, by default

· The core of what we’re doing is here: when the player presses ‘B’, find an empty spot & put the new laser into it. If there are no empty spots, ignore the input

· Note: it would probably be better to play a sound if there are no bullets left, so that the player knows that we ‘heard’ the button press, but that the game is intentionally not shooting another laser.

#region If the player presses 'B', fire a (wall-destroying) laser

if (XnaAssignmentBase.GamePad.ButtonBClicked())

{

 // go looking for an inactive laser

 for (int i = 0; i < arr_activeLasers.Length; i++)

 {

 if (arr_activeLasers[i] == false)

 {

 // found an open space - use it!

 arr_activeLasers[i] = true;

 arr_PositionLasers[i].X = m_PositionBug.X; // origins for both are already centered

 arr_PositionLasers[i].Y = m_PositionBug.Y + 30f;

 break; // we've found a spot, so stop looking for others

 }

 }

}

#endregion
· Move the lasers, and while we’re at it, check for collisions with walls:
#region move the lasers, if any are in play

for (int iLaser = 0; iLaser < arr_activeLasers.Length; iLaser++)

{

 if (arr_activeLasers[iLaser] == true)

 {

 arr_PositionLasers[iLaser].Y = arr_PositionLasers[iLaser].Y + m_velocityLaser.Y;

 if (arr_PositionLasers[iLaser].Y > WorldMax.Y)

 {

 arr_activeLasers[iLaser] = false;

 }

 // check for collision with any of the walls:

 Vector2 laserWallDistance;

 for (int iWall = 0; iWall < arr_activeWalls.Length; iWall++)

 {

 laserWallDistance = arr_PositionLasers[iLaser] - arr_PositionWalls[iWall];

 if (laserWallDistance.Length() < OVERLAP_DISTANCE)

 {

 arr_activeWalls[iWall] = false;

 }

 }

 }

}

#endregion

· And lastly, draw all the lasers:
Part LISTNUM NumberDefault \l 1 Optimizing For multiple laser shots at once
What will be a little bit different is that we’d like to keep a counter of how many lasers we have on-screen, and only shoot another one if we have space left in our arrays – in order to do this, we’ll use an additional, integer, counter variables.

Page 1 of 4

