Page 4 of 7

C# & XNA: Arrays
Part LISTNUM NumberDefault \l 1 Try out the sample finished
Download the .Zip for today, and try out the finished project.

Part LISTNUM NumberDefault \l 1 Adding Walls For the Bullets To Collide With
Let’s start this by downloading the starter project, and adding in three walls for our bullets to collide with. What we’d like to create is a game wherein the player presses the ‘shoot’ button, a bunch of bullets zip towards to the top of the screen, and when a bullet overlaps with one of the three walls, we get some sort of visual feedback indicating that the overlap is happening

 In order to accomplish this, we should:
· Set the number of starting bullets to 10 (say), so that we don’t have to shoot the egg a bunch of times before we can test our new code

· Change the velocity of the bullets so that we can see whether the bullets are colliding with the walls or not, more easily.

· Add constants for the walls’ heights and widths:

· private const float WALL_WIDTH = 20;
private const float WALL_HEIGHT = 20;

· Add variables to track the location of the walls:

· Vector2 m_PositionWall_1; // Position of the first wall
Vector2 m_PositionWall_2; // Position of the second wall
Vector2 m_PositionWall_3; // Position of the third wall
· We don’t need velocities for the walls, since they won’t move.
· Initialize the walls so that they’re set at their initial positions:

· m_PositionWall_1.X = 200;
m_PositionWall_1.Y = 200;

m_PositionWall_2.X = m_PositionWall_1.X + (BULLET_SPACER + BULLET_HEIGHT);
m_PositionWall_2.Y = m_PositionWall_1.Y + (BULLET_SPACER + BULLET_HEIGHT);

m_PositionWall_3.X = m_PositionWall_1.X + 4 * (BULLET_SPACER + BULLET_HEIGHT);
m_PositionWall_3.Y = m_PositionWall_1.Y + 2 * (BULLET_SPACER + BULLET_HEIGHT);

· (Add the ‘Wall’ image if you’re working off the previous lecture’s project)

· Draw the walls:

· // Draw the walls (in DrawWorld)
DrawRectangle(m_PositionWall_1, WALL_WIDTH, WALL_HEIGHT, 0.0f /*rotate */, Color.White, Color.White, @"Wall");
DrawRectangle(m_PositionWall_2, WALL_WIDTH, WALL_HEIGHT, 0.0f /*rotate */, Color.White, Color.White, @"Wall");
DrawRectangle(m_PositionWall_3, WALL_WIDTH, WALL_HEIGHT, 0.0f /*rotate */, Color.White, Color.White, @"Wall");
· Modify the game, so that it prints out the string of zeros & one’s based on whether or not any bullets overlap with any of the walls (instead of whether the bullets overlap with the egg). In a nutshell, we want to see a ‘1’ at the top of the screen if SOME bullet is overlapping with the corresponding wall, and to see a ‘0’ if NO BULLET is overlapping with the corresponding wall. You should add the following code to DrawWorld:

bool overlap_wall_1 = false;

bool overlap_wall_2 = false;

bool overlap_wall_3 = false;

Vector2 temp;

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int i = 0; i < howManyBullets; i++)

 {

 DrawRectangle(temp, BULLET_WIDTH /* width */, BULLET_HEIGHT/* height */, 0.0f /*rotate */, Color.White, Color.White, @"PlayerBullet");

 Vector2 wallBulletDistance;

 wallBulletDistance = temp - m_PositionWall_1;

 if (wallBulletDistance.Length() < OVERLAP_DISTANCE)

 {

 overlap_wall_1 = true;

 }

 wallBulletDistance = temp - m_PositionWall_2;

 if (wallBulletDistance.Length() < OVERLAP_DISTANCE)

 {

 overlap_wall_2 = true;

 }

 wallBulletDistance = temp - m_PositionWall_3;

 if (wallBulletDistance.Length() < OVERLAP_DISTANCE)

 {

 overlap_wall_3 = true;

 }

 // MOVE TEMP OVER, SO WE'LL DRAW THE NEXT BULLET PROPERLY

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 }

}

string whichBullets = "";

if (overlap_wall_1 == true)

{

 whichBullets = whichBullets + " 1 ";

}

else

{

 whichBullets = whichBullets + " 0 ";

}

if (overlap_wall_2 == true)

{

 whichBullets = whichBullets + " 1 ";

}

else

{

 whichBullets = whichBullets + " 0 ";

}

if (overlap_wall_3 == true)

{

 whichBullets = whichBullets + " 1 ";

}

else

{

 whichBullets = whichBullets + " 0 ";

}

EchoToTopStatus(whichBullets);
Part LISTNUM NumberDefault \l 1 Adding an array, learning array basics
We’d like to modify the game so that when a bullet hits a wall, the bullet disappears. One approach to this would be to add in a bunch of bools, one per bullet. Now, in addition to seeing if drawBullet is true (i.e., if there are any bullets whatsoever that need to be moved/drawn), we could have a bunch of bools, one per bullet, which tracks whether we draw each individual bullet. To create such variables would look like:
// Here's what we want to avoid

bool bullet_1_active; // is the first (left-most) bullet still active?

bool bullet_2_active; // is the second (from the left) bullet still active?

bool bullet_3_active; // etc

bool bullet_4_active;

bool bullet_5_active;

bool bullet_6_active;

bool bullet_7_active;

bool bullet_8_active;

bool bullet_9_active; // ugh - this is repetitive, and will be hard to

bool bullet_10_active;// get right - watch out for typos! :)

Instead, let’s use an array to keep track of all these. For this exercise, our goal will just be to get used to how arrays work. We should:
· Declare the array of 10 bools:

· bool[] arr_activeBullets;

· Initialize the array:
· arr_activeBullets = new bool[MAX_NUM_BULLETS];

// This loop is (technically) not needed (since C# puts
// false into all the array slots anyways) but it's good to
// see how to initialize everything in the array to a particular value
for (int i = 0; i < arr_activeBullets.Length; i++)
{
 arr_activeBullets[i] = false;
}
· Display the 1’s and 0’s at the top of the screen, by putting this code into DrawWorld:
· string whichBullets = ""; // reset the string to be empty
for (int i = 0; i < arr_activeBullets.Length; i++)
{
 whichBullets = whichBullets + " " + arr_activeBullets[i];
}
EchoToBottomStatus("Which bullets are active: " + whichBullets);

Important things to take note of:

· Note how naturally loops & arrays go together

· Use the arrayName.Length property to write code that goes through every element in the array

· Note that the index of the first array slot is ZERO, not one!

· If you try to put a value (true/false) into a slot that’s less than zero, or greater than or equal to arrayName.Length, the program will crash.

You should make sure to play around with these array things, and get comfortable with how they work. Things to try doing:

1. Set things up so that the very first slot in the array is true, instead of false
2. Set things up so that the last slot in the array is true, instead of false

3. Set things up so that the third slot in the array is true, instead of false
4. Use EchoToBottomStatus to print out the size of the array
a. Try changing the size of the array

5. Try to initialize a slot that has a negative index, or an index that’s larger than the size of the array.

6. Change the code around so that the program initializes all the slots to be true.
Part LISTNUM NumberDefault \l 1 Adding an array, to keep track of which bullets are still in-play
Now that we’ve had some time to get familiar with how arrays work, let’s actually use the array to keep track of which bullets are no longer active:
· Init all the slots in the array to be true each time that the player fires shot:

#region If the player presses 'A', fire a bullet

if (XnaAssignmentBase.GamePad.ButtonAClicked())

{

 if (drawBullet == false)

 {

 drawBullet = true;

 m_PositionBullet.Y = m_PositionBug.Y + 30f;

 m_PositionBullet.X = m_PositionBug.X - (BULLET_WIDTH + BULLET_SPACER) * .5f * (howManyBullets - 1);

 for (int iWhichBullet = 0; iWhichBullet < arr_activeBullets.Length; iWhichBullet++)

 arr_activeBullets[iWhichBullet] = true;

 }

}

#endregion

· Check for collision between bullets & any of the walls

#region If the bullet hits a wall, adjust the 'active bullets' array

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int iWhichBullet = 0; iWhichBullet < howManyBullets; iWhichBullet++)

 {

 distance = temp - m_PositionWall_1;

 if (distance.Length() < 40)

 {

 arr_activeBullets[iWhichBullet] = false;

 }

 distance = temp - m_PositionWall_2;

 if (distance.Length() < 40)

 {

 arr_activeBullets[iWhichBullet] = false;

 }

 distance = temp - m_PositionWall_3;

 if (distance.Length() < 40)

 {

 arr_activeBullets[iWhichBullet] = false;

 }

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 }

}

#endregion
· Adjust drawing routines so that only active bullets are drawn
if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int iWhichBullet = 0; iWhichBullet < howManyBullets; iWhichBullet++)

 {

 if(arr_activeBullets[iWhichBullet] == true)

 DrawRectangle(temp, BULLET_WIDTH /* width */, BULLET_HEIGHT/* height */, 0.0f /*rotate */, Color.White, Color.White, @"PlayerBullet");

 // MOVE TEMP OVER, SO WE'LL DRAW THE NEXT BULLET PROPERLY

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 }

}

Part LISTNUM NumberDefault \l 1 Display how many bullets are remaining
The next thing we want to do is get some practice with processing elements of an array. Let’s do this by printing a message to the user in the top status bar. We can do that by putting the following code into the DrawWorld routine:

int howManyLeft = 0;

for (int i = 0; i < howManyBullets; i++)

 if (arr_activeBullets[i] == true)

 howManyLeft = howManyLeft + 1;

EchoToTopStatus("There are " + howManyLeft + " bullets on-screen");

If you want, you should be able to change things around so that once the bullets have all left the screen, you change the message to read “There are ZERO bullets on-screen”

Part LISTNUM NumberDefault \l 1 Using an array to keep track of the walls
Let’s look at how we could use an array to keep track of another, repetitive element of our game: the walls. In the course of doing this, we’ll also look at nested loops. We should:
· Replace the three separate wall position vectors with an array:

· Vector2 [] arr_PositionWalls; // Position of the walls
· Replace the initialization code for the separate walls with:
arr_PositionWalls = new Vector2[3];

arr_PositionWalls[0].X = 200;

arr_PositionWalls[0].Y = 200;

arr_PositionWalls[1].X = arr_PositionWalls[0].X + (BULLET_SPACER + BULLET_HEIGHT);

arr_PositionWalls[1].Y = arr_PositionWalls[0].Y + (BULLET_SPACER + BULLET_HEIGHT);

arr_PositionWalls[2].X = arr_PositionWalls[0].X + 4 * (BULLET_SPACER + BULLET_HEIGHT);

arr_PositionWalls[2].Y = arr_PositionWalls[0].Y + 2 * (BULLET_SPACER + BULLET_HEIGHT);
· Adjust the collision detection logic to use the array.
NOTE how much shorter this code is than having three separate cases
NOTE that we’re using a nested loop here!

#region If the bullet hits a wall, adjust the 'active bullets' array

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int iWhichBullet = 0; iWhichBullet < howManyBullets; iWhichBullet++)

 {

 for (int iWhichWall = 0; iWhichWall < arr_PositionWalls.Length; iWhichWall++)

 {

 distance = temp - arr_PositionWalls[iWhichWall];

 if (distance.Length() < 40)

 {

 arr_activeBullets[iWhichBullet] = false;

 }

 }

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 }

}

#endregion
· Update the drawing code appropriately:
// Draw the walls

for (int iWhichWall = 0; iWhichWall < arr_PositionWalls.Length; iWhichWall++)

{

 DrawRectangle(arr_PositionWalls[iWhichWall], WALL_WIDTH, WALL_HEIGHT, 0.0f /*rotate */, Color.White, Color.White, @"Wall");

}

Page 4 of 7

