Page 1 of 4

C# & XNA: IterativeStatements
Part LISTNUM NumberDefault \l 1 Try out the sample finished
Download the .Zip for today, and try out the 030_Game_With_Repetition_Finished project.

Part LISTNUM NumberDefault \l 1 Orient yourself to the starter project
Given the starter, look it over & figure it out
New addition to the Model: Constant values

· We’ve already seen:
private const float WORLD_MIN_X = 0.0f
· What’s new are things like:
private const float BULLET_WIDTH = 7;
private const float BULLET_HEIGHT = 20;
private const float BULLET_SPACER = 5;
These are useful because

1. it’ll help us our numbers straight (especially as we move towards using the same number in multiple places), by letting us replace numbers with words

2. it will help us if we want to change the sprite for the bullet, or the space between bullets
3. they allow us to define words (numbers), even if we’re not using them just yet
Part LISTNUM NumberDefault \l 1 Increasing the Bullet Count When the Egg is hit: Positioning the bullet
In the controller code, when the player shoots a bullet, you should calculate the position of the left-most bullet (working outwards from the center of the bug)
m_PositionBullet.X = m_PositionBug.X - (BULLET_WIDTH + BULLET_SPACER) * .5f * (howManyBullets-1)

You’ll notice that we’re using .5f (.5, float – instead of just .5, which is a double). Notice how the following doesn’t work:
m_PositionBullet.X = m_PositionBug.X - (BULLET_WIDTH + BULLET_SPACER) * (1/2) * (howManyBullets-1)

Notice how the following will actually work since BULLET_WIDTH & BULLET_SPACER are floats:

m_PositionBullet.X = m_PositionBug.X - (BULLET_WIDTH + BULLET_SPACER) * 1 / 2 * (howManyBullets-1)

In order to detect collision with any of our bullets, modify the controller code:

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int i = 0; i < howManyBullets; i++)

 {

 distance = temp - m_PositionEgg;

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 if (distance.Length() < 40)

 {

Notice how we move temp.X over BEFORE the ‘collision’ logic, so that we don’t forget to do so afterwards. Shortly further on, we’ll need to add a break statement:
 // release a power-up, if you haven't already

 if (drawPowerUp == false)

 {

 drawPowerUp = true;

 m_PositionPowerUp.X = m_PositionEgg.X;

 m_PositionPowerUp.Y = m_PositionEgg.Y - 20;

 }

 break; // out of the enclosing loop

}

Finally, we’ll need to draw the bullets, so we’ll add the following to the View code:
Vector2 temp;

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int i = 0; i < howManyBullets; i++)

 {

 DrawRectangle(temp, BULLET_WIDTH /* width */, BULLET_HEIGHT/* height */, 0.0f /*rotate */, Color.White, Color.White, @"PlayerBullet");

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 }

}

Notice how we’re using the formula “temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;” in two separate places.
Part LISTNUM NumberDefault \l 1 Tracking which bullets overlap the egg
Change the ‘bullet drawing logic’ in the View code to be:
string whichBullets = "";

Vector2 temp;

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int i = 0; i < howManyBullets; i++)

 {

 DrawRectangle(temp, BULLET_WIDTH /* width */, BULLET_HEIGHT/* height */, 0.0f /*rotate */, Color.White, Color.White, @"PlayerBullet");

 Vector2 eggBulletDistance = temp - m_PositionEgg;

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 if (eggBulletDistance.Length() < OVERLAP_DISTANCE)

 {

 whichBullets = whichBullets + " 1 ";

 }

 else

 {

 whichBullets = whichBullets + " 0 ";

 }

 }

 EchoToTopStatus(whichBullets);

}

However, this won’t work quite yet, since we stop drawing the bullets as soon as they being to overlap with the egg. So we’ll also need to modify the controller code:

#region If the bullet hits the egg, adjust hit points & drop a power-up

Vector2 distance;

Vector2 temp;

if (drawBullet == true)

{

 if (drawPowerUp == false)

 {

 temp = m_PositionBullet;

 for (int i = 0; i < howManyBullets; i++)

 {

 distance = temp - m_PositionEgg;

 temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

 if (distance.Length() < 40)

 {

 // decrease hit points by 1

 hitPointsLeft--;

 // remove the bit about ‘drawBullet = false’

 // release a power-up, if you haven't already

 drawPowerUp = true;

 m_PositionPowerUp.X = m_PositionEgg.X;

 m_PositionPowerUp.Y = m_PositionEgg.Y - 20;

 break; // out of the enclosing loop

 }

 }

 }

}

#endregion
Part LISTNUM NumberDefault \l 1 Logical operators: AND &&
Change the above to
Vector2 temp;

if (drawBullet == true && drawPowerUp == false)

{

 temp = m_PositionBullet;

Independent exercise: Figure out how to use the logical && to make the game shoot a new bullet only when the player has clicked the A button, and the drawBullet variable is currently false.

Page 1 of 4

