Page 13 of 14

GameMaker: IterativeStatements
Part LISTNUM NumberDefault \l 1 Preview of finished game
Based on what you’ve seen in class, you should add code that prevents the user from moving the egg off the screen, either in the X direction, or the Y direction.
Part LISTNUM NumberDefault \l 1 Basic Strategy For Detecting overlap on our own, in GM
Download the .ZIP file that contains all the .GMK files for this lesson. You should specifically open up the 01_StartingPoint.GMK file, and examine it in detail, as you’ll be building off it during these exercises.
A couple of things to take note of:

· There are 4 sprites

· We may not use all of them; the major goal of selecting these sprites is that they look very different from each other, so they will be easy to distinguish from each other.
· These were obtained from YoYoGames website, as part of the ‘Maze Games’ tutorial. The URL for a direct download is “http://www.yoyogames.com/downloads/tutorials/maze.zip”. YoYo games specifically allows this to be used for non-commercial usage at http://www.yoyogames.com/terms, when it says “Use of yoyogames.com and Games:
* You MAY download and use yoyogames.com and the Content, including Games on it solely for your private, non-commercial, personal use only.”
· We have put the origin for the sprites in their CENTER, not the upper-left hand corner

· Since the C#/XNA that we’re using also centers the origin, and since these GameMaker exercises are primarily intended to get you ready to use C#, it makes sense to move the origin here

· The ghost mostly does the normal ‘bounce back and forth’ off the walls thing. We’re only going to move it horizontally, which will make it easier for us to figure out the overlapping thing, later.

· The controller object defines a variable, named collided, which starts off by setting to false. Each Draw event, the controller will print out the value of collided onto the screen, so we can see what it’s value is.
· The wall just sits there, currently.
When the ghost collides with the wall, the Collision event in the wall will set object_controller.collided to true, which the controller will then draw.
Part LISTNUM NumberDefault \l 1 Detecting overlap on our own, in GM, using circles
We want to build up to being able to detect when something overlaps something else, in a C#/XNA-like manner.

So, for this exercise, let’s figure out how to detect if the ghost is overlapping something, using a circle-based detection mechanism. Let’s create an object_diamond object, and have it use the sprite_diamond since it will be visually distinctive from the wall. Add one of these objects to the room, in a place where the ghost will run over it.
Also, add a new variable, named collided_diamond to controller. Update the controller’s Draw method so that it prints out the current value of collided_diamond.
Next, we’ll add logic to the Ghost, so that at each Step, it will check and see if it’s currently overlapping the diamond. We’ll do this using the Test Expression action, which is available in the ‘control’ tab. Specifically, we’ll test the following expression:
point_distance(x, y, object_diamond.x, object_diamond.y) < 30

If that expression is true, then we’ll use the Set Variable action to set object_controller.collided_diamond to true. Once you’ve done that, the Step event for the object_ghost should look like:

[image: image1.png]Name: [abject_ghost

L —

Q [pieghost =
New | _Edt

¥ isible I~ Solid

pepin [o
™ Pasient

Barert: [eroparents | =)

ek [z oo 2,

©) Show nfomalion

o Intersect Boundary

Actions:

?

Set vaiable obisct_controler.colded_diamond to e

Test Expression

[

Applisto
@ Sef

C Other
 Object

expression

X Cancel

~Cther

oo R

~code

~Variables

]

oa

en

If you look closely at the expression, you’ll see that it’s exactly the same as what we were doing in C#: checking to see if the distance between the two center points (of our imaginary circles) is less than some amount. In GameMaker, since the object_ghost is the one that’s responding to the event, we only have to list out the x, y. But for the other thing (the object_diamond) we actually have to specify exactly what which object we’re talking about, before asking for it’s x/y attributes.
Once you’ve done that, make sure to test your code – once the ghost passes over the diamond, the on-screen printout of the collided_diamond should change to true. This will then be reflected in the on-screen printout of that variable.
Once you’ve got all that done, see if you can’t set things up so that collided_diamond is true when the ghost is currently overlapping the diamond, and false when they aren’t overlapping. Make sure that you try these two approaches:
1. Add an ‘else’ clause to Test Expression action, so that collided_diamond goes back to being false after the ghost leaves it.
2. Try setting collided_diamond to false at the beginning of the event, and then using only the Test Expression action to set it to true if they’re overlapping. This way, if they don’t overlap, the original value that you assigned (false) will still be there.

For both of these approaches, you should both be able to get the approach to work, and be able to fully comprehend, explain, and utilize it elsewhere.

Part LISTNUM NumberDefault \l 1 Having a single object_wall draw multiple sprites
We want to draw three separate sprites on the screen. Eventually we’ll build up to drawing an arbitrary number of sprites on the screen, as determined by the value of some variable.

The key to understanding this is to realize that the object has a location on-screen. We can draw as many sprites as we want to, relative to the location of the object.
So for this exercise, we’ll use the sprite_wall for the sprite that is drawn at the object’s location. We’ll also use sprite_person, because it’s visually distinctive. We’ll use the sprite_person for the sprites that aren’t at the object’s location. Mainly, this will help us keep track of where things are.

For now, we’ll have the wall be in the middle, and the people on either side. From what you learn here, you should then be able to move on to more complicated examples, which place additional sprites anywhere, relative to the object.
In the wall object, replace the Draw event with the following actions:
1. Draw Sprite, with the sprite_wall, at a location of (0,0), relative to the object

2. Draw Sprite, with the sprite_person, at a location that’s relative to the (wall) object. The y value should be zero. For the x value, we want to start with the x value of the origin of the wall, which we moved to be ½ into the sprite_wall. Since the origin of the sprite_person is also in the middle of the sprite_person, we’ll need to move over by ½ of width of the sprite_person. Plus, we’ll want to have, say, 50 pixels distance between the left edge of the wall, and the right edge of the person. The following picture illustrates this reasoning:
[image: image2.png]sprite_get_widih(sprite_diamond) / 2

50 pixels

sprite_get_widih(sprite_wall) / 2

D ————
sprite_get_ widih(sprite_person) / 2 + sprite_get_width(sprite_wall)/ 2 + 50

Figure 1: Distance Between Two Sprites

The only thing to keep in mind is that since we want to move this to the left, we want to SUBTRACT this from the current x position of the object_wall, so our final expression is:
- (sprite_get_width(sprite_person)/2 + sprite_get_width(sprite_wall)/2 + 50)
Similarly, we can employ the same sort of reasoning to put a person 50 pixels to the right of the wall, using another Draw Sprite action, and the following expression for the RELATIVE value of x, when drawing the rightmost person sprite:
sprite_get_width(sprite_person) / 2 + sprite_get_width(sprite_wall) / 2 + 50

Part LISTNUM NumberDefault \l 1 Detecting overlap using circles, with multiple sprites
For this exercise, we want to detect if the ghost overlaps with any of the sprites. Unfortunately, GameMaker doesn’t do this by default; even if it did, we’d still want to figure out how to do it this way, so that we can then make use of this technique in C#.
Basically, we’ll need to figure out where the center of the ghost is, where the center of the sprite that we’re looking at is (the left person, the wall, or the right person). We’ll then use the point_distance method to figure out the distance between those two points.

First, in the object_wall, delete the Collision event with the ghost, then run the program in order to make sure that you never accidentally detect the collision using the built-in GameMaker method.
Next, let’s detect when the ghost overlaps the left person: add a Step event to the ghost (if you haven’t already), and within it, set the object_controller.collided to false as the first action. This way, we can check a bunch of overlapping conditions, and if none of them are true, then we’ll ‘default’ to saying that there’s no overlap.

Next, since calculating the x position of the left is a bit involved, let’s use the Set Variable action to set up a temporary variable named temp_x. It should be set to the center of the left person’s sprite, which is:
object_wall.x - (sprite_get_width(sprite_person)/2 + sprite_get_width(sprite_wall)/2 + 50)
Next, add in a Test Expression action, which checks is the midpoint of the person is within 30 pixels of the midpoint of the ghost, using the following expression:
point_distance(x, y, temp_x, object_wall.y) < 30

If that’s true, then set object_controller.collided to be true (which will then be printed to the screen by the controller object.
So, at this point, your code should look like:

[image: image3.png]Name: [obiectghost | | Events Actions:

L — [uae] 5t vaiable obiect_cortroler.colded o false:
sprte_ghost |1 & [oar] et vaiable temp._ to obiect_uall - spre_get_widthispie_persori/2 + spre_gel |

& IniecBcurcay
New | _Ea | [JRp—— |

[Visbe [Soid [une] 5t vaiable obiect_contrler.colided to tue

if expression point_istance(x, v, temp_x, object_wally) < 30 s true|

Deptt [0
T~ Pesistent

In order to detect overlap with the wall & right person, we’ll need to do the same sort of thing. For each check, we’ll set up temp_x, then use it to check an expression, and if so, we’ll set collided to be true. The formula we’ll use to set temp_x to the middle of the wall is just “object_wall.x”. For the right person, we’ll use:

object_wall.x + (sprite_get_width(sprite_person)/2 + sprite_get_width(sprite_wall)/2 + 50)

(Note the + sign instead of - !!!!)

Once you’ve got that all set up, you should be looking at something like:
[image: image4.png]AEHERS.

[uae] 5t vaiable obiect_cortroler.colded o false:

[var] et variable temp_ to obiect_wall - (sprte_get_widthispite_person)/2 + spie_gel

f an expression s tue

[ume] 5t vaiable obiect_contrle.colided to tue

[une] et vaiable tertp_s to obiect_walx

f an expression s tue

[ume] 5t vaiable obiect_contrle.colided to tue

[oar] et variable temp._ to obiect_wall + spie_get_widthsprte_persor)/2 + spite_ge

f an expression s tue

[ume] 5t vaiable obiect_contrle.colided to tue

Admittedly, the above does work correctly. However, it’s a bit hard to follow what’s going on. So our next step will be to add blocks around each of the logic blocks that get run when there’s an overlap. Also, we’ll add in GameMaker comments. Comments are available in the ‘Control’ tab, in the ‘Code’ section, and look like [image: image5.png]

Once we’ve done that, our code now looks like:
[image: image6.png]Actians:

[uae] 5t variable obiect_cortroler.colided to false:

[oar] et variable temp._ to obiect_wall - (sprte_get_widthispie_person)2 + spie_gel

Ifan eupression s e

£, Statof ableck
B\ vt ity o poran

[uae] 5t vaiable obiect_contrler.colided to tue

7 Endot ablock

[ume] et vaiable tertp_s to obiect_walx

Ifan eupression s e

£ Sttt stlock
8 oo it sl

[uae] 5t vaiable obiect_contrler.colided to tue

7 Endot ablock

[FaR] et variable temp._ to obiect_wall + spie_get_widthsprte_persor)/2 + spite_ge

f an expression s tue

£, Statof ableck
A Gty ritepen

[uae] 5t vaiable obiect_contrler.colided to tue

7 Endot ablock

Part LISTNUM NumberDefault \l 1 Detecting overlap using circles, with multiple sprites, AND A LOOP!
Looking at the code, you’ll notice that we’re doing the exact same thing, three times in a row:
1. Set temp_x to be the new value

2. See if the new (temp_x, object_wall.y) is close to the ghost’s (x,y)

a. If so, then remember that the ghost & one of the sprites overlap by setting the collided variable to true.
Let’s start by rearranging the actions that we’ve got slightly, so it’s very clear what’s being repeated. The first Set Variable (the one that establishes the starting value of temp_x) should be left alone, but the other two should simply add sprite_get_width(sprite_person)/2 + sprite_get_width(sprite_wall)/2 + 50 to the current X value. So for those actions, we’ll change them to be relative to the current value of temp_x, like so:

[image: image7.png]Applisto
o8] | & sel

C Other
 Object

variable:
value: [te_gel_width(spite_wall/2 + 50

¥ Relative

X Cancel

Turns out, all programming languages (including both the GameMaker program, and C#) have a way of repeating some task several times. In GameMaker, we can use Repeat action, which is located on the ‘Control’ tab, in the ‘Other’ section:
[image: image8.png]Other

=]

Code

oo 28

What we’ll do is first drag the Repeat action to just before the first Test Expression action. Since we’ve got 3 things that might overlap the ghost, we’ll have the Repeat action happen 3 times. Next, we’ll surround everything that we want to repeat in a block. Specifically, this is everything from the Test Expression action, to the Set Variable action. Finally, we’ll delete the other two checks, and be left with:
[image: image9.png]Actins:

[uae] 5t variable obiect_cortroler.colided to false:

||[88] 5ot vt omo_sto it okttt posony2 » sl

Q] Repeat 3 times
A Sotcfatiock repeatnestacon Heck) s e

Ifan eupression s e

£, Statof ableck
B\ vt ity o poran

[uae] 5t vaiable obiect_contrler.colided to tue

7 Endot ablock

[FaR] et variable temp_ to spite_get_widih{spre_person)/2 + spie_get_widthsprs

At this point, you should be able to run your program, and confirm that everything is still working the way it was after the prior
Part LISTNUM NumberDefault \l 1 Drawing multiple sprites with A LOOP!
Next, you should (for practice) go back & modify the object_wall’s Draw event, so that it also uses a Repeat action. You’ll basically want to do the same thing that you’re doing in the ghost’s step, except that instead of the Test Expression
[image: image10.png]Replace this section with the ‘Draw Sprite" action

Actins:

[uae] 5t variable obiect_cortroler.colided to false:

|] 5t vttt bl - st _iisrteeron2» s

Q] Repeat 3 times

et of & lock repeat next action (block) 3 times|
£, Statof ableck

£, Statof ableck
B\ vt ity o poran

[uae] 5t vaiable obiect_contrler.colided to tue

7 Endot ablock

[FaR] et variable temp_ to spite_get_widih{spre_person)/2 + spie_get_widthsprs

 Once you do that, you should see something like:
[image: image11.png]Actians:

o] et variable ter, o cbiect_wall - spie_get_widtspre,_persor + 50

G| Repeat 3 times.

£ Statof ableck

@] Drow spite spite_wal

o] et vaiable temp._ to spite_get_widh{spre_person) + 50

7 Endot ablock

One thing to note is that since we’re doing the exact same thing inside the loop (what GameMaker calls Repeat actions, all other programming languages may refer to as a loop), and since we (currently) have no way to know which iteration we’re on, we’ll have to draw three copies of the same thing – in this case, a row of walls.
Part LISTNUM NumberDefault \l 1 Dynamically setting the number of walls to draw
Let’s say that we want to have the number of walls that we’re drawing be controlled by the program, as it’s running. Note that once you’ve mastered this technique, you can draw some number of walls, or bullets (which may be determined by the number of ‘power-ups’ a player has), or cloned enemies, etc.

In order to do this, we’ll need a variable that keeps track of how many walls to draw. So add a variable to the controller object, and name it num_walls. For right now, we’re just looking for a quick and easy way to test whether our code works or not, so let’s add an event handler for the user pushing the <Up> key to the object_controller. When this event is run, you should have the code increase the value of num_walls upwards by 1. Let’s also add an event handler for the user pushing the <Down> key to the object_controller. When this event is run, you should have the code decrease the value of num_walls downwards by 1. However, you don’t want this number to go negative, so add a Test Expression in before the Set Variable action. Have the Test Expression only do the next line if the num_walls variable is greater than 1. Lastly, add an action to the controller’s Draw action, so that the num_walls is drawn on-screen.
Lastly, in the object_wall.Draw code, change the Repeat action so that it will run a number of times equal to object_controller.num_walls. Everything else will stay the same, like so:
[image: image12.png]Actians:

[une] 5t vaiabletertp_s o obiect_wllx

| Repeat obiect_contollerrum_wals tines

£ Statof ableck

@] Drow spite spite_wal

o] et vaiable temp._ to spite_get_widh{spre_person) + 50

7 Endot ablock

Finally, in the object_ghost.Step code, change it’s Repeat action so that it will run a number of times equal to object_controller.num_walls.
[image: image13.png]Actians:

[uae] 5t vaiable obiect_cortroler.colded o false:

[uae] 5et vaiabletertp_s to obiect_uall¢

(] Repeat obiect_contollerrum_wals tines

£, Statof ableck

Ifan eupression s e

£, Statof ableck
B i avetyning the midhe sl

[uae] 5t vaiable obiect_contrler.colided to tue

7 Endot ablock

[FaR] et vaiable temp._ to spite_get_widh{spre_person) + 50

7 Endot ablock

Part LISTNUM NumberDefault \l 1 Power-Up: MultiShoot! (Optional)
For this exercise, you should do this mostly on your own.

The basic idea is that the player should play a 2D shooter, similar to the one that we looked in some of the previous lectures. Periodically, a power-up should drop from the top of the screen towards the bottom. For EACH ONE of these power-ups that the player gets, the player’s plane should shoot an extra bullet. The following diagram illustrates what should happen if the player has 0, 1, or 2 power-ups, and presses the ‘shoot’ key one. If the player has more than 2 power-ups, then more bullets should be created.
[image: image14.png]No Power-Ups 1Power-Up 2 Power-Ups

The basic strategy here will be to have the Controller keep track of how many power-ups have been gotten, using a variable (something like num_powerups).
In terms of the enemies - keep them doing the ‘normal’ at the top of the screen, bouncing back and forth endlessly.
Part LISTNUM NumberDefault \l 1 Identifying which sprite is being overlapped
TBD (
This will be a good prep for something with an array

Part LISTNUM NumberDefault \l 1 C#: Drawing multiple sprites
Add the folllowing code to the DrawWorld method:

// Draw the Eggs

Vector2 tempLocation = m_PositionEgg;

DrawRectangle(tempLocation, 40 /* width */, 50 /* height */, 0.0f /*rotate */, Color.White, Color.White, @"egg");

tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

DrawRectangle(tempLocation, 40 /* width */, 50 /* height */, 0.0f /*rotate */, Color.White, Color.White, @"egg");

tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

DrawRectangle(tempLocation, 40 /* width */, 50 /* height */, 0.0f /*rotate */, Color.White, Color.White, @"egg");

Part LISTNUM NumberDefault \l 1 C#: Drawing multiple sprites with A LOOP!

Replace the code from the prior exercise with this code:
// Draw the Eggs

Vector2 tempLocation = m_PositionEgg;

for (int i = 0; i < 3; i++)

{

 DrawRectangle(tempLocation, 40 /* width */, 50 /* height */, 0.0f /*rotate */, Color.White, Color.White, @"egg");

 tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

}

Part LISTNUM NumberDefault \l 1 C#: Detecting overlap using circles, with multiple sprites
Put the following into your DrawWorld method:

bool isOverlapping = false; // assume we're not overlapping

Vector2 distance; // create the temporary variable, just once

// Reuse the existing tempLocation from above to detect collisions

tempLocation = m_PositionEgg;

// Check against the first egg:

distance = tempLocation - m_PositionBug;

if (distance.Length() < 30)

 isOverlapping = true;

tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

// Check against the second egg:

distance = tempLocation - m_PositionBug;

if (distance.Length() < 30)

 isOverlapping = true;

tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

// Check against the third egg:

distance = tempLocation - m_PositionBug;

if (distance.Length() < 30)

 isOverlapping = true;

// We don't need to do this, since we're not checking against a forth egg:

// tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

if (isOverlapping)

 EchoToTopStatus("Overlapping: YES");

else

 EchoToTopStatus("Overlapping: NO");

Part LISTNUM NumberDefault \l 1 C#: Detecting overlap using circles, with multiple sprites, AND A LOOP!
Replace the code from the prior exercise with this code:
// This code snippet still goes into your ‘View’ code:

bool isOverlapping = false; // assume we're not overlapping

// Reuse the existing tempLocation from above to detect collisions

tempLocation = m_PositionEgg;

for (int j = 0; j < 3; j++)

{

 Vector2 distance = tempLocation - m_PositionBug;

 if (distance.Length() < 30)

 isOverlapping = true;

 tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 30 'pixels' for space

}

if (isOverlapping)

 EchoToTopStatus("Overlapping: YES");

else

 EchoToTopStatus("Overlapping: NO");

Part LISTNUM NumberDefault \l 1 C#: Drawing/detecting overlap: multiple sprites, dynamically set

Add this to the instance variable creation part of your Model:

int howManyEggs;

Add this to the variable initialization part of your Model:

howManyEggs = 1;

Add this to your Controller code (in UpdateWorld):
// If the player presses 'A', add an egg

if (XnaAssignmentBase.GamePad.ButtonAClicked())

 howManyEggs = howManyEggs + 1;

// If the player presses 'B', remove an egg

if (XnaAssignmentBase.GamePad.ButtonBClicked())

 if(howManyEggs > 1)

 howManyEggs = howManyEggs - 1;

And then make the following changes in your view:
// Draw the Eggs

Vector2 tempLocation = m_PositionEgg;

for (int i = 0; i < howManyEggs; i++)

{

 DrawRectangle(tempLocation, 40 /* width */, 50 /* height */, 0.0f /*rotate */, Color.White, Color.White, @"egg");

 tempLocation.X = tempLocation.X + 90; // 40/2 + 40/2 + 50 'pixels' for space

}

// Reuse the existing tempLocation from above to detect collisions

tempLocation = m_PositionEgg;

for (int j = 0; j < howManyEggs; j++)

{

 Vector2 distance = tempLocation - m_PositionBug;

 if (distance.Length() < 30)

 isOverlapping = true;

Page 13 of 14

