Page 8 of 8

GameMaker: Conditional Statements
For these exercises, you should download the .ZIP that contains all the C#/XNA programs that we looked at in Lecture 3. You’ll need to extract them, and then open the project named 008_ControlTheDroppingEgg.

Part LISTNUM NumberDefault \l 1 Bounding Egg Movement
Based on what you’ve seen in class, you should add code that prevents the user from moving the egg off the screen, either in the X direction, or the Y direction.
Part LISTNUM NumberDefault \l 1 Making the Bug Move
If you haven’t done so yet, you should add another image to your program, such as one of the insects from lecture 2. Make sure to add (and initialize) a position vector in the Model, and to add the DrawRectangle command to the View, so that you can see the image on-screen.

Next, add a ‘velocity’ vector to the Model, and use it in the Controller to move the bug towards one side of the screen.
Next, add code to the Controller portion of your program so that when the bug reaches one edge of the screen, the bug no longer moves. Make sure that you can do this either by setting the velocity to zero, or by having an if statement which stops moving the bug (but keep the velocity the same).

Lastly, modify the code once more, so that in the Controller, if the bug reaches ANY side of the screen, the bug turns around, and moves in the opposite direction.

Part LISTNUM NumberDefault \l 1 Circle-based Collision DetectionMove
Based on what you’ve done so far, you’ve been able to move a sprite across the screen, and if that sprite hits the wall, you’ve got it so that the sprite will ‘bounce’ off the wall & move in the opposite direction.
For this exercise, we’re going to look at how to detect whether two sprites are overlapping, using circles. Let’s start by looking at a couple of pictures. To start, let’s look at a scene the way the player will. Clearly, the bug and the egg do NOT overlap:
[image: image1.png]

Next, let’s try drawing in the ‘mental guides’ that we’ll use to figure out if the two things have overlapped. We draw a circle around the egg, centered on the middle point of the egg. This works out pretty well, since the egg is nearly circular itself. We also draw a circle on the center point of the bug. This works out ok, but not as well as the egg. In particular, we can see that we’ll either have to make the circle too small, and occasionally not notice that the bug is overlapping something (pictured), or else make it too big, and mistakenly say that the bug is overlapping something when it really isn’t. We’ll go for a ‘happy medium’, where the circle isn’t too big, nor too small, but still isn’t perfect.
Now let’s look at the ‘math’ of this situation: if the radius of the bug’s circle is set at 10, and the radius of the egg’s circle is set at 20, and the distance between the two center points is, say, 75, we can see that the two sprites do not overlap, because the distance between them (75) is larger than the sum of their radii (10 + 20 = 30).

[image: image2.png]

Similarly, let’s examine a situation when the two sprites DO overlap, as pictured below:

[image: image3.png]

Again, let’s look at this with the help of our ‘mental guides’:

[image: image4.png]bug radius = 10 (say) distance = 22 (say)

eqg radius = 20 (say)

Clearly, the sum of the two radii hasn’t changed (it’s still 30), but what has changed is that the distance between the center points is now 22, instead of 30. So if the distance between the two center points is less than the sum of the radii, then the two sprites are overlapping.
So, in order to determine if two sprites overlap (using circles), we’ll basically need two pieces of information:
1. The distance from the center of one sprite to the center of the other sprite, and

2. The radii of the two circles that we’re using
Again - the basic idea is that if the distance between the two center points is less than the sum of the radii of the two circles, then the circles must be overlapping.

In order to get these two pieces of information, we’ll need to pretend to draw circles over the two things that we’re checking for overlap. In this case, we will (mentally) draw our ‘best approximation’ circles around the bug & the egg, with each circle centered on the middle of the sprite.

Then, as the game runs, we can ask (in C# code) how far apart those two center points are, which gets us that first piece of information that we need. We can do this by subtracting one vector from another, and then asking C# what the Length() of the resulting vector is. We can actually do this fairly simply in C#, using the built-in subtraction operator that Vector2 objects support.
Vector2 distance = m_PositionEgg - m_PositionBug;

// length of the resulting vector is given by distance.Length()
// So if we wanted to print the length of that vector to the

// bottom of the screen, we could do so with:

// (Remember to put this into the View code!)

EchoToBottomStatus(distance.Length());
For right now, we’re going to just eyeball that second piece of information that we need (instead of having the computer actually keep an accurate track of how large each circle is, for example) – for this exercise, let’s assume that the combined radii of the two circles is 30.

Lastly, we need to do some action when the egg & bug overlap, so that it’s clear that our code is working properly. For now, we’ll print a message to the bottom of the user’s screen, like so:
// (Remember to put this into the View code!)

Vector2 distance = m_PositionEgg - m_PositionBug;

if (distance.Length() < 30)

 EchoToBottomStatus("Overlapping!");

WHAT YOU NEED TO DO:

Add code to your controller that uses circle-based collision detection to figure out if the egg that the user controls is overlapping the bug. If it is overlapping, use the EchoToBottomStatus to print the message “Overlapping!” to the screen.
Part LISTNUM NumberDefault \l 1 The ‘else’ statement ; String concatenation

In the previous exercise, we saw that we could figure out (approximately) if two sprites overlapped. For this exercise, we want to extend our understanding of conditional structures slightly, by printing one message if the two objects overlap, and a different message if they don’t.
We’ll make use of the ‘else’ clause, which can be attached to any if statement. In this case, if the two circles are overlapping, we will print the message “Overlapping”, and if they aren’t, we’ll print the message “CLEAR”, like so:

// This code snippet goes into your ‘View’ code:

Vector2 distance = m_Position - m_PositionBug;

if (distance.Length() < 30)

 EchoToBottomStatus("Overlapping");

else

 EchoToBottomStatus("CLEAR”);

This is good, but what would also be nice is to see the distance between the centers of the two sprite (so that we can verify that our code does what we think it does). We can do that by printing out a message that we’ve created using string concatenation. In C# (and most other programming languages), text is referred to as a string (which is short for ‘a string of individual characters’, I think). Concatenation is a verb, meaning to put one thing after another (more-or-less). So string concatenation is the process of taking one block of text, and ‘glueing it onto’ another block. In C#, this is done using the + operator. For example, if I had code that looked like:
 EchoToBottomStatus("Overl” + ”apping");

The text I would actually see on the screen would still be the word “overlapping”.

We can also do this with non-string data, as long as (1) there is a string on at least 1 side of the +, and (2) as long as C# can convert the data to a string. Happily, C# can convert the decimal number that distance.Length() produces. Thus, we can do something like this:

	
// This code snippet still goes into your ‘View’ code:

Vector2 distance = m_Position - m_PositionBug;

if (distance.Length() < 30)

 EchoToBottomStatus(" Overlapping: distance is: " + distance.Length());

else

 EchoToBottomStatus(" NOT Overlapping: distance is: " + distance.Length());

Part LISTNUM NumberDefault \l 1 Random numbers in C#
Add another image to your program, and add whatever you need to the Model & View to draw it on the screen. We will use this as something that the bug will randomly drop towards the bottom of the screen. For now, let’s call it a bomb, mostly so that it has a name. In order to track the position & velocity of the bomb, we’ll have to add the following to the ‘variable declaration/creation’ portion of our Model code:
 Vector2 m_PosBomb;

 Vector2 m_VelBomb;

Next, in the initialization part of the Model code (specifically, inside the InitializeWorld method), you should set up the starting position & velocity of the bomb:

m_PosBomb.X = 100f;

m_PosBomb.Y = 250f;

m_VelBomb.X = 0f;

m_VelBomb.Y = -10f;

Next, add some code on your own, to the Controller, so that the bomb slowly moves towards the bottom of the screen.

What we’d like to build up to is

Add a Random number generator to your Model, as well as a bool variable that tracks whether or not we’re currently dropping a thing. Set this to false, and update your View so that you only draw the thing that you’re dropping when this variable is true. You can do this by adding the following code to the variable declaration/creation portion of your Model code:
// This goes underneath the m_PositionBug variable

Random m_random;

bool m_dropping;

And by adding the following to the variable initialization portion of your Model code:

 // This goes inside the 'InitializeWorld'
m_random = new Random();

 m_dropping = false;

In your Controller code, you should set things up so that the game will, randomly, drop a bomb towards the bottom of the screen. Since we only have 1 place to track where the bomb is, we can only have 1 bomb falling at a time. So therefore if the bomb if in the process of falling, we will not do anything other than continue to make it fall. If the bomb falls completely off the screen, then we’ll make a note that the bomb is no longer falling. We will track whether the bomb is falling using that Boolean m_dropping variable that we created up above:
// This goes inside the ‘controller’ code
if (m_dropping == true) // Note that double-equals (==) means EQUALITY!!!
{

 m_PosBomb.X = m_PosBomb.X + m_VelBomb.X;

 m_PosBomb.Y = m_PosBomb.Y + m_VelBomb.Y;

 if (m_PosBomb.Y < WorldMin.Y)

 m_dropping = false; // Single-equals (=) means ASSIGNMENT!!!!
}
Of course, since m_dropping starts off as being false, and since the above code only runs if m_dropping is true, how do we ever get to running the above code? We’ll do this by first checking that we’re not already dropping a bomb, and if we’re not, then we’ll create a random number between 0 & 1, and if that number is higher than a particular number that we’ve chosen, we’ll ‘drop the bomb’. The code for this looks like:
// This goes inside the ‘controller’ code
if (m_dropping == false)

{

 if (m_random.NextDouble() >= 0.95)

 {

 m_dropping = true; // Remember that we’re dropping the bomb
 m_PosBomb.X = 100f; // Re-set the bomb’s staring position
 m_PosBomb.Y = 250f;

 }

}

All together, the code looks like:

// This goes inside the ‘controller’ code
if (m_dropping == true)

{

 m_PosBomb.X = m_PosBomb.X + m_VelBomb.X;

 m_PosBomb.Y = m_PosBomb.Y + m_VelBomb.Y;

 if (m_PosBomb.Y < WorldMin.Y)

 m_dropping = false;

}
if (m_dropping == false)

{

 if (m_random.NextDouble() >= 0.95)

 {

 m_dropping = true;

 m_PosBomb.X = 100f;

 m_PosBomb.Y = 250f;

 }

}

The last step is to make sure that our View code only draws the bomb on-screen when the bomb is actually descending. We can do that with the following code:

if (m_dropping == true)

{

 DrawRectangle(m_PosBomb, 40 /* width */, 50 /* height */, 0.0f /*rotate */, Color.White, Color.White, @"ImageOfTheThingWeWantToDrop");

}

For this exercise, make sure that your program can randomly drop a bomb, but only if it’s not already in the process of moving another, existing bomb downwards. Once you’ve got that, see if you can set things up so that the bug drops by bomb from the bug’s current position.
Part LISTNUM NumberDefault \l 1 Detecting a collision between the Thing & the Egg
Using circle-based collision detection, set things up so that if the dropping thing (the bomb that the bug dropped) collides with the egg, then the bomb will no longer be drawn (you can do this by setting the Boolean m_dropping variable back to false).
Part LISTNUM NumberDefault \l 1 Pulling it all together
Set things up in your C# code so that the bug moves from side to side at the top of the screen, and the player can move the egg from side to side (only) at the bottom of the screen.

If there’s nothing on-screen already, then about 10% of the time, the bug will drop a thing downwards. If that thing hits the player’s egg, then the Thing disappears. If the Thing goes off the screen, then that thing will also disappear (so that the bug may drop it again).
Part LISTNUM NumberDefault \l 1 Extra Stuff: Adding a Score
See if you can add code to your Model, View, and Controller, so that each time the player’s egg hits the dropping thing, the player gets a point. Using EchoToTopStatus, print out the current score for the player. To get you started, you can add the following code to your programs’ variable declaration code:
int m_TheScore;
// int means 'integer' – whole numbers only

// OK: -10, -1000, 0, 10, 39778

// BAD: 3.14159, 3.0, -3.1, 17.17, etc
You can also add the following to your variable initialization code, in order to start the score at zero:

m_TheScore = 0;

Page 8 of 8

