GameMaker: Using Alarms To Time Events
Let’s say that you want something to happen periodically in your game. Maybe you want to subtract some points from the players’ score every so often, so as to add some time pressure to the game. Maybe you want to have a time limit for the player to complete some task – not only do you need to keep track of whether the player has run out of time for the overall task, but you may want to have an on-screen display. You can do all this using GameMaker Alarams.

An alarm works very similarly to an alarm clock from real life: you set the alarm, some time passes, and then the alarm goes off. If you want the alarm to go off again, you need to re-set the alarm. The only thing to keep in mind about GameMaker alarms is that in GameMaker, the alarms are always relative. So in real life, if it’s 1am, and you want to get up at 8am, you set the alarm for 8am. In GameMaker, you would set the alarm for 7 hours (essentially)
Let’s walk through how might set things up so that once a second, the player’s score goes down by 10 points.
1. Create a room, a sprite, and a basic object
In the accompanying example .GMK file, the room is blank, the sprite is a bug, and the object is named object_bug. HOWEVER, everything we’ll look at will work just as well with a controller object, too.
Put one of the objects into the room.

2. Start by giving the player 1,000 points
Remember that if the score goes negative (or hits zero), it won’t be displayed in the titlebar anymore, so this will give us something to look at.
In our example, you can do this in the Create event for the object, using the Set Score action.

3. Set an alarm
At some point in your game, you’ll need to start the process of repeatedly setting the alarm, and then responding to the Alarm event. In this case, it makes sense to also do this in the Create event for the object, using the Set Alarm action (it’s hidden in the ‘main2’ panel of actions, at the top – in the grouping that’s sensibly labeled ‘Timing’). There are a number of alarms that you can set – let’s use Alarm 0.

You’ll want to set the ‘number of steps’ to 30, since the default speed of the game is 30 steps per second, and we want the alarm to go off once a second. You’ll want to leave the ‘relative’ box UNchecked, as pictured here:

NOTE: You may have problems if you try to set the alarm to have a time of “zero” – I’m not 100% sure what’s going on, but I’m guessing that the game can’t respond in 0 steps since it’s already doing something, and then forgets (maybe).

[image: image1.png]Applisto

D] | & set
Ot
€ Dbject

rumber of steps: [E
in alam na: [Alsim 0 — &

T~ Relative

X Cancel

4. Create the event handler for the Alarm event:
You should create a new event handler for the Alarm event, as pictured below. Keep in mind that we’re using Alarm 0, you should respond to Alarm 0:
[image: image2.png]Jevent selector]
3 Croate o
&) Destioy @ Otrer
7 B = Draw
56 Aami feyPress
S Colis M2 L Reease
Alarm 3
EaKeybe plymg | Cancel
Hlarm s
Alarm &
AddEvert alarm 7
Hlarm &
Dekte | | Change 0
Alarm 10
|[@Gamemaker 4 aam11 B

5. Respond to the Alarm event:
The most important thing to remember to do here is to set the alarm again.

In addition, you want to adjust the score downwards (using the Set Score action, with a relative -10 as the value). In the example, we also use the Jump to Position command to bump the bug over in discrete steps.

Page 2 of 2

