BIT 143: Assignment 2
Page 5/5
9/27/2004

BIT 143 – ASSIGNMENT 2

DUE DATE: Monday, Oct 18th 2004
Classes, Strings

Part 1: Writing the program:
A (Simplified) Reverse Polish Notation Calculator

Objective:

For this assignment, you will create a simple, console-driven calculator program. The main objective will be to create a program that allows the user to type in a simple mathematical expression, parse it (i.e., figure out what the user typed), and evaluate a single expression, in an object-oriented way. You will be provided with a project 'skeleton', which contains enough files to get you started on the right track.

The project skeleton is the same one that you received in Assignment 1, so you should already be familiar with it. For this project, you will write code that will enable the calculator to parse the user’s input (i.e., figure out what the user typed)
Example Transcript, Reverse Polish Notation (RPN):

Please review A1 for this.
String Parsing:

While you must write the entire Parser class yourself, you may make use of standard C++ string-processing routines, including such routines as strlen, strcmp, strtok, or atof.
Further, you must write your Parser class so that it works in the current code with a minimal number of changes to files other than Parser.h/Parser.cpp. While you’re free to modify a small amount of the skeleton, re-writing major portions of the skeleton will result in a penalty, grade-wise. Part of the objective of providing you with code is to help you get used to how code is written in industry – if you join the existing team, you’ll work on a project that’s been around for sometimes many versions. In that situation, you’ll be expected to build off the existing code base, rather than starting from scratch.

Further, I would suggest that you try to create a stand-alone version of your code first, so that you can first think about how to do the parsing, then separately figure out how to integrate it into the existing code.

String Format:

The user will type in a string. If there are any errors whatsoever, you should tell the user that something went wrong. The string should consist of:

<optional whitespace> operand <mandatory whitespace> operand <mandatory whitespace> operator <optional whitespace>

Note that the whitespace that separates the operands & operator is necessary. Note also that “whitespace” means tabs, as well as the space character.

An operand looks like the following:

[optional +/- sign]X[optional .Y]

X is an integer. This integer may or may not have leading zero’s, and might just be zero all by itself.
If there’s a period after X, then at least one more (intger)number must follow, although it might be only zero. You don’t have to worry about handling more than 3 decimal places’ worth of Y
An operator is ‘+’, ‘*’, or ‘q’/’Q’ for this assignment. ‘+’ means add, ‘*’ means multiply, and ‘q’/’Q’ means quit. Note that either operand may also be replaced with the ‘q’/’Q’. If you find a ‘q’/’Q’, anywhere, you should have the program quit.

The user can type in mal-formed expressions (such as 3.1 +), but the rest of the code should catch those errors. In other words, if the individual parts of the expression (the operand(s) and operator(s)) are ok, your parser should accurately return a sequence of double and OpCode objects that represent those things, and let the rest of the code deal with the fact that 2 operands and 1 operator are required. If you find an error while parsing the string (Ex: “3 Mike +” – the “Mike” is neither an operand, nor a known operator), you should return an the OpCode with a value of OP_INVALID. You do NOT have to parse anything after the source of the error (So in “3 Mike +”, you should first return a double representing the 3, then one with the OP_INVALID set, and thereafter return objects with OP_END_OF_SEQUENCE, should the caller continue to call the method).

In a nutshell, your job is to write the routine that’ll parse a C-style string, and convert that input into a stream (a.k.a. sequence, or succession) of objects.

Part 2: Self-Reflection : Think Critically

Cascadia Community College has a defined 4 Learning Outcomes that are intended to guide your learning. The Learning Outcomes are college-wide themes that can be found in any class you take at Cascadia. For example, instead of only lecturing, in this class you spend a lot of time thinking critically by actively solving new problems, figuring out why your code doesn't work, and understanding why other parts of your code does work. When you go home, you should continue to think critically by analyzing your programs, figuring out how to make them more efficient, and by improving the design of them. By making you aware of these goals, and showing how your experiences here are connected to these outcomes, it is hoped that you will become more aware of how you learn, and ultimately enable you to drive your own education. The 4 Learning Outcomes are listed in both the Schedule of Classes, and the Student Handbook.

For this assignment, you’ll focus on the Learning Outcome of “Thinking Critically”. The Student Handbook explains why Critical Thinking is important when it says that “Reason and imagination are fundamental to problem solving and the critical examination of ideas.” One way to demonstrate the ability to Think Critically is to “Recognize and solve problems using creativity, analysis, and intuition.”

In part 1 you created a program; now you should test it. In addition to verifying that your code does what you think it should by testing it, you should document what you've done, so that you can prove to other people that your code works reasonably well. In a separate Word document entitled A2.0_CriticalThinking.doc, list the inputs that you chose to test for each method, what each input causes your test program to output, and what portion of your code this input/output verifies the correctness of. You should briefly explain why your inputs collectively verify the correctness of your code. I would recommend using a table in Word that looks something like the following:
	Input
	Output
	What Does this Verify?

	
	
	

(New items, added to clarify what the code has to handle, is in italics)
Examples of stuff that should work:

· (Remember that all parsing must be done all by hand)

· 3

· 3.0

· 3.143 – no more than 3 decimal places.

· 0.143

· Trimmed leading whitespace?

· Extra whitespace within the expression?

· “Q”, or “q”, case-insensitive

· +N
· -N
· Extra whitespace at the beginning, at the end, of the line?
Examples of stuff that should cause an error (error cases):
· “” (empty string as the whole input)

· ++

· Mike
· .43
· .+

· +.

· 3+4 (should this be an error
Group Work, Commenting:

You are not allowed to work in groups for this assignment. You should start, finish, and do all the work on your own. If you have questions, please contact the instructor.

Additionally, you should aggressively comment your code, paying particular attention to areas that are difficult to understand. If you found something to be tricky when you wrote it, make sure to comment it so that the next person (the instructor, who's grading you) understands what your code is doing. It is not necessary to comment every single line.

The purpose of new requirement is to both help you understand, and have you demonstrate, a thorough understanding of exactly how your program works.

Every file that you turn in should have:

· At the top of the file, you should put your name (first and last), the name of this class (“BIT 143”), and the year and quarter, and the assignment number, including the revision number, which starts at 0 (“A2.0”). If you’re handing this in again for a regrade, make sure to increase the minor version number by one (from “A2.0”, to “A2.1").

In general, you should make sure to do the following before handing in your project:

· All variables used should have meaningful names.

· The code should be formatted consistently, and in an easy to read format.

What to turn in:
· A single electronic folder (a directory). This folder should contain:

· The source code for the classes, plus your 'main' function
Remember that for each class, you should put it's declaration into the header (.h) file, and the implementation into the source code (.cpp) file. Each header file should contain at most one class declaration (the interface), and each source file should contain the implementation for at most 1 class.
In addition to the source files for you class implementations, you'll need a main.cpp file, which contains your main function, and any other functions you care to write.
I would prefer that you include the project files – stuff ending in .SLN and .VCPROJ, so I can build your project more easily.
· A Word document that contains your short paper on Critical Thinking.

· You have to name the folder with your last name, then first name, then the assignment number (both the major version – 2, and the minor (revision) number – 0). Example: "Panitz, Mike, A2.0"

· You should not include the Debug directory, or anything from it. I will dock you a couple points if you do. This directory is generated from your source, and usually about 10 MB for a trivial program. Also, you don't need to include your .NCB file, if it's present.

How to electronically submit your homework:

Create a new folder on your desktop, and give it a name that includes the assignment number, and your name (eg: " Panitz, Mike, A2.0"). Copy all the required materials for the assignment into this folder.

The link you'll need to follow is:

Z:\BIT\BIT 143\2004-2005\Fall\

 (note that this link won't work unless you're at Cascadia)

 and copy the folder from your desktop to the folder labeled "DropBox".

Note: Since you only have "write" permission on the folder, not "read" permission, you won't be able to look inside the folder & confirm that it's there.

Note Also: Don't leave your folder on your desktop, since it will be copied to each computer you log in to: this can be slow for a large project.

BIT 143: Assignment 2
Page 5/5
9/27/2004

