BIT 143: Assignment 1
Page 6/7
10/16/2004

BIT 143 – ASSIGNMENT 1
DUE DATE: Monday, Oct 11th 2004 (Parts 1 & 2)

Monday, Oct 4th 2004 (Part 3)

Strings ; Dissecting A Framework
Part I: Strings
Create an appropriate program from the description below. Make sure that you put these functions into a separate file (named something like StringFunctions.cpp), and you have a header file with the same name ("StringFunctions.h") so you can use them in your Main.cpp file (which contains main). Your main should run through all the test scenarios listed below (plus any others that you can think of). If you can, you should allow the user to give input at runtime to the functions, so that you can do more ad-hoc testing.
The Assessment Criteria can be found in a separate file on the website.
1. strlen (30 points)
Create a function named MyStrLen (or anything else that doesn't conflict with the original strlen function), which takes as it's single parameter a string
(char *), and returns (as it's return value) how many characters are in the string. If the passed the empty string, or a NULL pointer, it should return zero. Under no circumstances should it crash. Your strlen function should behave like the standard version of strlen (described in your book (§5.12), and online). Make sure that your version passes all the following tests:

	Table 1: Behavior for strlen

	Input
	Return Result

	strlen("Hello");
	5

	strlen("H E L L O");
	9 (blank spaces between letters)

	strlen("I");
	1

	strlen("");
	0

	strlen(NULL);
	0

2. strcmp (40 points)
Create a function named MyStrCmp (or anything else that doesn't conflict with the original strcmp function), which takes strings (char *'s)as its two parameters, and returns (as it's return value) one of three numbers based on the Table 2, below. Your version of strcmp must behave like the standard version does, as described in various sources (your textbook, the Internet, Visual Studio's online help, etc). You should make sure that it produces the results described in Table 3, below.

	Table 2: Behavior of int strcmp(char *string1, char*string2)

	Input
	Example
	Return Value

	string1 is less than string2.
I.e. string1 comes before string 2 in the dictionary. Note that the blank string (and NULL pointers) will be arbitrarily put at the beginning of the dictionary.
	strcmp("aardvark", "zebra");
	-1

(this means that "aardvark" comes before "zerbra")

	string1 is identical to string2
	strcmp("bob", "bob");
	0
(this must be exactly identical – case matters, blank spaces matter, etc)

	string1 is greater than string2
	strcmp("bobby", "bobbi");
	1

	Table 3: Behavior for strcmp

	Input
	Return Result

	strcmp("aardvark", "zebra");
	-1

	strcmp("bob", "bob");
	0

	strcmp("bobby", "bobbi");
	1

	strcmp("", "bobbi");
	-1

	strcmp(NULL, "bobbi");
	-1

	strcmp("39", "31");
	1

Part 2: Self-Reflection : Think Critically

Cascadia Community College has a defined 4 Learning Outcomes that are intended to guide your learning. The Learning Outcomes are college-wide themes that can be found in any class you take at Cascadia. For example, instead of only lecturing, in this class you spend a lot of time thinking critically by actively solving new problems, figuring out why your code doesn't work, and understanding why other parts of your code does work. When you go home, you should continue to think critically by analyzing your programs, figuring out how to make them more efficient, and by improving the design of them. By making you aware of these goals, and showing how your experiences here are connected to these outcomes, it is hoped that you will become more aware of how you learn, and ultimately enable you to drive your own education. The 4 Learning Outcomes are listed in both the Schedule of Classes, and the Student Handbook.

For this assignment, you’ll focus on the Learning Outcome of “Thinking Critically”. The Student Handbook explains why Critical Thinking is important when it says that “Reason and imagination are fundamental to problem solving and the critical examination of ideas.” One way to demonstrate the ability to Think Critically is to “Recognize and solve problems using creativity, analysis, and intuition.”

In part 1 you created a program; now you should test it. In addition to verifying that your code does what you think it should by testing it, you should document what you've done, so that you can prove to other people that your code works reasonably well. In a separate Word document entitled A1.0_CriticalThinking.doc, list the inputs that you chose to test for each method, what each input causes your test program to output, and what portion of your code this input/output verifies the correctness of. You should briefly explain why your inputs collectively verify the correctness of your code. As a hint, you should take the example cases put forth in this assignment as a basic starting point, and add anything you need from there. I would recommend using a table in Word that looks something like the following:
	Input
	Output
	What Does this Verify?

	
	
	

Part 3: Preparing for Assignment 2:
Examining an Object-Oriented Reverse Polish Notation Calculator

Preview: Objective of Assignment 2 (A2):

You will complete a simple, console-driven calculator program. The main objective will be to create a program that allows the user to type in a simple mathematical expression, parse it (i.e., figure out what the user typed – this is what your job will be for A2), and evaluate a single expression, in an object-oriented way. You will be provided with a project 'skeleton', which contains enough files to get you started on the right track.

Objective of Assignment 1:

At this point, you should be able to create a program that satisfies the objective for A2 on your own, from scratch, in whatever way you decide. However, most programmers don’t start from scratch and aren’t free to design the program however they want. Most programmers join existing projects, and seek to maintain these existing programs by fixing/adding features rather than by rewriting everything from scratch. For A2, you’ll be given a fairly complex, object-oriented ‘skeleton’ of a program that you’re going to have to add a feature to (you’ll need to add the input-parsing feature).

The objective here (for assignment 1) is for you to become familiar with the project by answering questions about it, before you have to actually add code to it. Be aware that not everything in the project will be topics you’ve seen already (e.g., assert), and may not be covered in class. In this case, you’ll clearly have to look to other sources of information in order to figure out what it does.

First, let’s look at what the program should do, from a user’s point of view:

Example Transcript Of The Program:

Given the objective for assignment 2, the following is a transcript demonstrating what the program might be used to do.

Welcome To The Reverse Polish Notation Calculator, RPNCalc 1.0!

RPNCalc allows you to enter mathematical expressions, which are then evaluated; the result is then displayed on the screen for your convenience!!

Notice that in Reverse Polish Notation, you write the operands FIRST, then the operators. So instead of writing

3 + 5 <Enter>

You'd write

3 5 + <Enter>

NOTE: For this version, only addition (+) and multiplication (*) work.

NOTE: For this version, can only have 2 operands and 1 operator

What expression would you like me to evaluate?

(Type "Q <Enter>" to quit")

> 5 3.1 +

The answer is: 8.1
What expression would you like me to evaluate?

(Type "Q <Enter>" to quit")

> 5.2 -1.3 +
The answer is: 3.9!!

> Q

Thanks for using RPNCalc1.0! Please remember to upgrade to version 2.0 when we release it!

Reverse Polish Notation (RPN):

Reverse Polish Notation is a different way of writing a mathematical expression. Normally, we use what's called in-fix notation:

3 + 5

Because the operator, '+', is in between the operands (3 and 5). However, we could also write the exact same expression using, say, prefix notation:

+ 3 5

There are a couple of language (LISP, I believe) that uses this prefix notation extensively. Notice that the operator 'prefixes' the operands. Reverse Polish Notation uses postfix notation, wherein the operator follows the operands:

3 5 +

However, it gets a bit more complicated. Much like you can say

3 + 5 - 7

you can also say this in RPN:

3 5 + 7 -

In assignment 2, you'll create a program that will implement a Reverse Polish Notation calculator. However, rather than implementing a full calculator with many operators (+, -, *, etc) you only need to implement operations for addition and multiplication. Further, you don't need to evaluate expressions that are any more complex that 2 operands and a single operator (3 5 +, or 7 6 *).

Ultra-Brief Discussion of the Design:

The design for the assignment was chosen mainly for our ability to extend it in the future - for a future assignment, you may end up implementing a full RPN calculator based on this code, with the following features:

· A full complement of operators
This will involve adding more Op* classes, such as OpDivision, OpSubtraction, etc. We can place these into an array and exploit polymorphism to make this easily extensible

· The ability to handle arbitrarily complex expressions (5 4 3 + -, etc)
In order to do this, RunProgram will accumulate operands in a "stack" data structure until it finds an operator. RunProgram will then hand the stack and the operator to it's Calculate method,
Questions (To Be Answered As Part Of Assignment 1)
1. The flowchart (20 points)

There's a link to a Visio file on the website that contains a rough flowchart for the program. Notice that it leaves off lots of details – you're going to use it to get a good idea of how the program should work overall, not the nitty-gritty details.

You need to use the flowchart to explain where the data (information) comes from, and where it goes to. Since this is a user-driven program, much of the information will ultimately come from the user (such as the expression to evaluate) – you should figure out where it goes to, and how it's processed along the way.

Please note that the Parser.cpp file is intentionally left blank – you'll be filling that in during A2. Part of your job is to figure out what the class needs to do, in order to make the rest of the program work. A hint: while you're allowed to do so, you shouldn't need to modify the rest of the program. Another hint: read the comments, and feel free to ask the prof. questions in-class.

You don't need to use Visio. I can provide you with print-out, you can use an image editing program, you can even re-write it onto graph paper if you'd rather.

Skimming through assignment 2 (posted on the website) may (or may not () give you some more insight into how the program should work.

2. <assert.h> (5 points)

(Yes, you’ll have to look this up)
 What happens when you assert something that’s true? When you assert something that’s false? What’s the point of having the “asserts”?
Can you remove this from the shipping (i.e., non-debug) version of your code easily?
Why use assert(<Something>) when you can use if(<Something>)
Give an example of how using an assert would help you (as a developer) find bugs faster.

3. The Calculator::RunProgram method (5 points):

(As a side note, this is probably the most important method in the program)

Explain how it detects one of these errors:
· Not enough operands (3 +)

· Too many operands (even if the first three are ok: 3 4 1 +)
· Operator where an operand should be (3 + 4)

Group Work, Commenting:

You are not allowed to work in groups for part 1 and 2 of this assignment. For these parts, you should start, finish, and do all the work on your own. You are encouraged to work with someone else for part 3 ONLY. If you have questions, please contact the instructor.

Additionally, you should aggressively comment your code, paying particular attention to areas that are difficult to understand. If you found something to be tricky when you wrote it, make sure to comment it so that the next person (the instructor, who's grading you) understands what your code is doing. It is not necessary to comment every single line.

The purpose of new requirement is to both help you understand, and have you demonstrate, a thorough understanding of exactly how your program works.

Every file that you turn in should have:

· At the top of the file, you should put your name (first and last), the name of this class (“BIT 143”), and the year and quarter, and the assignment number, including the revision number, which starts at 0 (“A2.0”). If you’re handing this in again for a regrade, make sure to increase the minor version number by one (from “A2.0”, to “A2.1").

In general, you should make sure to do the following before handing in your project:

· All variables used should have meaningful names.

· The code should be formatted consistently, and in an easy to read format.

What to turn in:
· A single electronic folder (a directory). This folder should contain:

· The source code for the classes, plus your 'main' function
Remember that for each class, you should put it's declaration into the header (.h) file, and the implementation into the source code (.cpp) file. Each header file should contain at most one class declaration (the interface), and each source file should contain the implementation for at most 1 class.
In addition to the source files for you class implementations, you'll need a main.cpp file, which contains your main function, and any other functions you care to write.
I would prefer that you include the project files – stuff ending in .SLN and .VCPROJ, so I can build your project more easily.
· A Word document that contains your short paper on Critical Thinking.

· You have to name the folder with your last name, then first name, then the assignment number (both the major version – 1, and the minor (revision) number – 0). Example: "Panitz, Mike, A1.0"

· You should not include the Debug directory, or anything from it. I will dock you a couple points if you do. This directory is generated from your source, and usually about 10 MB for a trivial program. Also, you don't need to include your .NCB file, if it's present.

How to electronically submit your homework:

Create a new folder on your desktop, and give it a name that includes the assignment number, and your name (eg: " Panitz, Mike, A1.0"). Copy all the required materials for the assignment into this folder.

The link you'll need to follow is:

Z:\BIT\BIT 143\2004-2005\Fall\

(note that this link won't work unless you're at Cascadia)

 and copy the folder from your desktop to the folder labeled "DropBox".

Note: Since you only have "write" permission on the folder, not "read" permission, you won't be able to look inside the folder & confirm that it's there.

Note Also: Don't leave your folder on your desktop, since it will be copied to each computer you log in to: this can be slow for a large project.

BIT 143: Assignment 1
Page 6/7
10/16/2004

