BIT 143: Assignment 3
Page 3/3
11/21/2004

BIT 143 – ASSIGNMENT 3
DUE DATE:

Classes, Pointers new and delete
Part 1: Writing the program:
A (Simplified) Reverse Polish Notation Calculator

Objective:

For this assignment, you will create extend the simple, console-driven calculator program you’ve been working on for the previous two assignments. The main objective will be to create a program that allows the user to type in an arbitrarily complex (but legal) mathematical expression, parse it (i.e., figure out what the user typed), and evaluate it, in an object-oriented way.
You should continue to work the framework that you used for Assignment 2 (i.e., you’re not going to be given a Parser class, so you should use your own). As a note, you’re not allowed to hand in your Assignment 3, and claim that it’s also your revision for Assignment 2. In other words, you should make whatever fixes you need to do in A2, then copy those fixes into A3.

Example Transcript, Reverse Polish Notation (RPN):

Please review A1 for these.
Arbitrarily Complex Expressions:

In previous version of the calculator, you could support no more than 2 operands, and a single operator. Now, you should extend the calculator’s functionality so that it can support as many operands and operators as the user wants to type in (until new fails, of course (). If you want to implement an abstract data type to do this (note that you’re not allowed to use “pre-fab” code out of, say, the Standard Template Library), you should create a separate class to implement that A.D.T. The parser should function with either no, or else very minor, changes from A2. Examples of valid expressions:
	RPN
	‘Normal’

	1 2 3 4 + + +
	1 + 2 + 3 + 4

	1 2 + 3 4 + +
	(1+2) + (3 + 4)

	-3.1 4.207 + 7.1 * -3.14 +7.98 + +
	((-3.1 + 4.207) * 7.1) + (-3.14 + 7.98)

Lecture 7 contains an illustration of what makes an RPN expression “valid”

You should modify the RunProgram method so that it correctly verifies the expression (i.e., every operator has two operands to operate on, and when OP_END_OF_SEQUENCE is reached, there’s exactly one operand left).

Hint: You will need to implement an ADT to make this work. ‘Grafting’ an ADT into, say, the Calculate method won’t get you full credit.
new, delete:

You should modify your framework so that you're using the new operator in at least two separate places. This can be something like creating a Calculator object using new, creating memory for your Parser class to use, or something else. Obviously, you'll have to modify the rest of the program to ensure that everything still works. Don’t forget to release (delete) memory that you’re no longer using!
Group Work, Commenting:

You are not allowed to work in groups for this assignment. You should start, finish, and do all the work on your own. If you have questions, please contact the instructor.

Additionally, you should aggressively comment your code, paying particular attention to areas that are difficult to understand. If you found something to be tricky when you wrote it, make sure to comment it so that the next person (the instructor, who's grading you) understands what your code is doing. It is not necessary to comment every single line.

The purpose of new requirement is to both help you understand, and have you demonstrate, a thorough understanding of exactly how your program works.

Every file that you turn in should have:

· At the top of the file, you should put your name (first and last), the name of this class (“BIT 143”), and the year and quarter, and the assignment number, including the revision number, which starts at 0 (“A3.0”). If you’re handing this in again for a regrade, make sure to increase the minor version number by one (from “A3.0”, to “A3.1").

In general, you should make sure to do the following before handing in your project:

· All variables used should have meaningful names.

· The code should be formatted consistently, and in an easy to read format.

What to turn in:
· A single electronic folder (a directory). This folder should contain:

· The source code for the classes, plus your 'main' function
Remember that for each class, you should put it's declaration into the header (.h) file, and the implementation into the source code (.cpp) file. Each header file should contain at most one class declaration (the interface), and each source file should contain the implementation for at most 1 class.
In addition to the source files for you class implementations, you'll need a main.cpp file, which contains your main function, and any other functions you care to write.
I would prefer that you include the project files – stuff ending in .SLN and .VCPROJ, so I can build your project more easily.
· You have to name the folder with your last name, then first name, then the assignment number (both the major version – , and the minor (revision) number – 0). Example: "Panitz, Mike, A.0"

· You should not include the Debug directory, or anything from it. I will dock you a couple points if you do. This directory is generated from your source, and usually about 10 MB for a trivial program. Also, you don't need to include your .NCB file, if it's present.

How to electronically submit your homework:

Create a new folder on your desktop, and give it a name that includes the assignment number, and your name (eg: " Panitz, Mike, A.0"). Copy all the required materials for the assignment into this folder.

The link you'll need to follow is:

Z:\BIT\BIT 143\2004-2005\Fall\

 (note that this link won't work unless you're at Cascadia)

 and copy the folder from your desktop to the folder labeled "DropBox".

Note: Since you only have "write" permission on the folder, not "read" permission, you won't be able to look inside the folder & confirm that it's there.

Note Also: Don't leave your folder on your desktop, since it will be copied to each computer you log in to: this can be slow for a large project.

Page 3/3
11/21/2004

