Review: Classes

Basic Class Use In C++

There were three steps to using a class that you make:

Defining it

Creating one or more instances of the class

Accessing (Using) it

If you've used structs, then you know the run-around: the exact same steps are used there.

Step 1:Defining the class

Syntax

class Point

{

public:

	int x;

	int y;

} ;

The above defines what a class will look like:

This structure will have two fields (also called the data members, or just members), named X. and Y.

Note that this does not actually create in the point structures-it just defines what they will look like

Important points

A class definition must go outside of any functions.

class is case sensitive

You must name each class, according to the normal rules�Stick with letters and you'll be fine.�Each class needs to have a unique name �(i.e., you can't give the exact same name to different categories of things).

The open curly brace is absolutely required, as is the curly brace at the end.

You need the public keyword. �If you leave this out, everything is (by default) private, meaning that only code that's part of the class can access it. In particular, main isn't allowed to access private member variables. �More detail on this, later.

I would highly recommend inventing indenting the fields (member variables) one tab stop.

Each member variables is defined just like a normal variable, including the semicolon. �You're not allowed to initialize them, though.�(So int x = 3; is not allowed inside the class definition)

The semicolon at the very end is required.

You cannot contain an instance of the type within itself, as this would cause an infinite loop in the definition.�You can contain a pointer to a separate instance; we'll go over this later.

The note that if you plan to use a class in multiple files, each file will need to contain a definition�Thus , it is a good idea to put class definitions inside header files

Having done this, we've defined what the entire category has in common

Every Point has an x and a y part

We haven't yet said anything about individual objects / instances of the class.

So, having defined the category / class, we'll now create individual objects.

Step 2: Creating A Class

Once you have defined the class you may use it is if it were a normal,built in type

For now, we will create a number of local variables of the type "point "

void main(void)

{

	Point p1;

	Point p2;

}

Notice that the variable declaration looks almost like a normal declaration,

Except that we specify the type to be Point.

Notice also we can create multiple instances of the same type

Clearly each must have a unique name

Note that the fields of each a variable are not initialized

Step 3: Accessing the fields of the structure

We will use the "dot notation" to access fields (member variables) of an object

If we want to assign a value to the 'x' part of P1, we would do so like so

p1.x =4;

If we want to obtain the value from the field "x" part of P1:

cout << p1.x

Notice that the syntax is the same on both the left and right hand side of the assignment statement

Technically, the "." is an operator-it has extremely high precedence

A complete example of using a point structure would look like:

class Point

{

public:

	int x;

	int y;

} ;

void main(void)

{

	Point p1;

	p1.x = 0;

	p1.x = 1;

	cout << "Point.x: " << p1.x << " Point.y: " << p1.y << endl;

}

Note that in this example, since p1 is a local variable, when main exits p1 will be destroyed.

ICE: You'll model the Name Game. You should create a class that models people.

Passing structures to functions

You pass a variable that is an instance of a class to a function/method just like any other type of variable

Note that the object is passed by value, meaning that space for entirely new object is made on the stack (in the activation record), and the values from the first are copied into this new one.

For now this is ok, later today we'll see how to do pass by reference using pointers.

Notice that since CompareFnx isn't part of the Point class, it can't access the private data members of p1 or p2, so it's forced to use the accessors to get to them.

#include <iostream.h>

class Point

{

public:

 Point(float newX, float newY) {x = newX; y = newY; }

 float getX() { return x; }

 float getY() { return y; }

private:

 float x;

 float y;

} ;

bool CompareFnx(Point p1, Point p2)

{

	if (p1.getX() == p2.getX() &&

 p1.getY() == p2.getY())

		return true;

	else

		return false;

}

void main(void)

{

	Point p1(0, 0);

	Point p2(0, 1);

	if(CompareFnx(p1, p2))

		cout << "p1 and p2 are the same" << endl;

	else

		cout << "p1 and p2 aren't the same" << endl;

}

Passing structures to methods

A method is a function with a couple extra functions

You can pass objects by value to methods as well.

You can even pass another instance of the same class to a method.

I.e., you can pass a second Point to a method in the Point class.

Don't get confused – class defines the behavior for all Points

The argument to Compare is an individual instance of the Point class

Also, public/private applies at a class level, not an instance level, so accessing the .x, .y of the argument is perfectly fine.

This makes sense, since the same person writes all the code for the Point class.

class Point

{

public:

 bool Compare(Point p)

 {

	 if (x == p.x && y == p.y)

		 return true;

	 else

		 return false;

 }

 Point(float newX, float newY) { x = newX; y = newY; }

 float getX() { return x; }

 float getY() { return y; }

private:

 float x;

 float y;

} ;

void main(void)

{

	Point p1(0, 0);

	Point p2(1, 2);

	if(p1.Compare(p2)) // see how easy this is!

		cout << "p1 and p2 are the same" << endl;

	else

		cout << "p1 and p2 aren't the same" << endl;

}

ICE: Change your IsTheSame method to accept a whole object, rather than the attribute.

Defining a class's behavior: Methods:

We'd like to be able to define behaviors (methods) that objects exhibit.

We define the behavior for the whole class/category

(every Person can tell you his/her name)

But individual instances exhibit slightly different details

(Mike's name isn't the same as Bob's)

A method is a function, associated with a specific class

I often use the term 'function' and 'method' interchangeably, although they're technically different.

class Point

{

public:	// Note that the : IS REQUIRED!!

	float x;

	float y;

 void PrintPoint(void)

 {

 cout << "X: " << x << " Y: " << y << endl;

 }

} ;

void main(void)

{

 Point p;

 p.x = 0;

 p.y = 0;

 p.PrintPoint();

 Point p2;

 p2.x = 1;

 p2.y = 2;

 p2.PrintPoint();

}

Important Points:

You can put the whole method definition inside the class if you want�You don't have to – you'll see this soon

The method definition inside the class looks exactly like a normal function def.

Except that you can refer to member variables (fields) of the class directly.�You can just say "x" and it works.

Inside main, you call the method by first indicating an object that you wish to call it with (in this case, p), then the dot, then the name of the method.�This means "Call method PrintPoint, and use the object p as the source for the fields." This is also called "sending a message to the object"

Class scope for fields

Means that within a method, since there is a default object, you can access any member variables (fields) that you want.

ICE: Add some methods to your class

Public vs. Private

Notice how we started out w/ everything being public

This is ok, if you're looking to simulate struct using a class

Why have both? C++ is backwards-compatible (99%) w/ C, so it couldn't get rid of them.

Why would you want something that's private?

Other parts of the program can't manipulate.

Fewer bugs, but isn't any more secure.

The main advantage is that other code won't accidentally change your object's internal data.

This idea is called encapsulation: the internal, private, state of an object isn't accessible to other parts of the program.

Important Points:

public, private are case-sensitive (along with everything else in C++)

You need the colon after the word

The access specifier pertains to everything following it, until you change it

You can change it as many times as you want.

Generally, put public stuff towards the top, where it will be easy to notice.

Note that other programmers can still look at the whole class; it's just that their code can't manipulate everything directly.

Accessor Methods

You can access public stuff anywhere

E.g., from main

You can access private stuff only within a method of the class

E.g., from PrintPoint

Thus, you can write public methods which manipulate private data for the user

User in this case is another programmer – "client' in the book

Why would you want to do this?

User doesn't have to worry about how data is stored, just how to use it.

This allows you to separate how an object is used (it's interface) from how it is implemented.

We can also put validation code in here

Code that we won't actually ship, but that we want to use during the development process

It checks values,etc, to make sure that everything is ok, and within expected ranges, etc.

This is so common, that methods that primarily manipulate (private) data members have a special name: Accessor methods

Reading a value is "getting" the value, Writing the field "sets" it, so you sometimes hear the term "get/set" methods.

class Point

{

public:	// Note that the : IS REQUIRED!!

	float x;

	float y;

	void InitPoint(float newX, float newY)

{

 x = newX;

 y = newY;

}

	void PrintPoint(void)

{

 cout << "X: " << x << "Y: " << y << endl;

}

float get_X(void)

{

	return x;

}

float get_Y(void)

{

	return y;

}

} ;

void main(void)

{

 Point p;

 p.InitPoint(0,0);

 p.PrintPoint();

 cout << "Value of p.x: " << p.get_X() << " p.y: " << p.get_Y() << endl;

}

ICE: Change the attribute to be private, so that main can't accidentally get to it. Make sure you've got enough accessor methods so that it will work ok.

Constructors, Default Constructors

Notice that in the prior code samples, creating an object (and instance of a class) was basically a two step process:

Create a local variable that gets us the space for the object

Call the Initialize method to set everything up for later.

If someone else comes along & forgets part 2, bad things might happen to our program (Bugs!!)

We'd like to avoid this

We'd like there to be just one step, which accomplishes both actions

(a special method which will be auto-magically called to initialize everything for other programmers.

This special method is called a constructor.

Ex:

#include <iostream.h>

class Point

{

public:

 // Constructor will set this point's x, y fields

 Point(float newX, float newY);

 // PrintPoint will print out the x, y fields on a single line

 void PrintPoint(void);

private:

	float x;

	float y;

} ;

// Constructor implementation

// Note the lack of a return type

Point::Point(float newX, float newY)

{

 x = newX;

 y = newY;

}

void Point::PrintPoint(void)

{

 cout << "X: " << x << "Y: " << y << endl;

}

void main(void)

{

 Point p(0,0);

 p.PrintPoint();

}

Important Points:

Constructors have the exact same name as the class.�As in the rest of C++, this is case-sensitive.

There is NO return type.�Not even void – constructors simply don't have return values�This will be important when we get to pointers.�This is true also where the method is implemented.

When creating an instance of the Point class, note that you pass arguments to to the constructor by putting a function-esque (0, 0) after the local variable declaration.

Exact sequence of events:

main starts

Program finds space for variable p

Once space has been found, the constructor is called.

ICE: Replace the Initialize method w/ a call to a constructor

Default constructor

If you don't specify any constructors at all whatsoever, C++ automatically creates a default constructor

Default constructor – a constructor that takes no arguments.

The C++ -generated default constructor also does no other work, but it does exist, so it'll prevent a couple of compiler errors.

However, the compiler only does this if you declare NO constructors

If you declare even a single constructor, the compiler stops generating the empty default constructor. So you'll get a compiler error if you try the following line:

Point p; // implicitly uses the default ctor

�A default constructor is any constructor that takes no arguments – there are a couple of ways to accomplish this – default arguments, method overloading, etc.

ASK: Anybody want to see some clarification about overloading?

If so, clarify this.

ICE: Create a second, overloaded constructor. Make it a default constructor.

Calling One Method From Another

A method can call another function/method

A method can call itself (i.e., it can be recursive – normal rules for recursion apply)

A method can also call another method in the same class.

Important Lesson: If you need to have 2 methods do the same thing, have one method call the other.

Easier to maintain (Fewer bugs (Less of your time spent hunting them

For example, you've got 2 (overloaded) constructors – instead of writing out the code twice, create a third function that they both call.

This is important in part because you can't have one constructor call another constructor (it'll compile & run, but not do what you want).

Design Notes:

DO have your constructor call the set* methods elsewhere

Explain why you can’t call another constructor directly

Explain how it’s good to have a common, private, “init” method

DON’T call cout from within a method, UNLESS that method exists to Print info to the user.

This limits reuse (every time you call it, you’ll need to deal w/ output)

You can put stuff in for your own debugging, but remove them before handing it in.

Embedding an instance of a class within another class

Last class, you saw how to create a basic class.

You then created a local variable that was an instance of that class

You then used that class to store & retrieve data from it.

This is all well and good, but it's basically a C style struct

You'll quickly reach the limitations of this.

Anything you can declare as a local variable

you can also declare to be a data member (field of a class/struct)

You've declared an instance of a class to be a local variable

Thus, you can also use it as a data member.

Clearly, you're not allowed to create a circular definition.

So if you wanted to create a class Triangle, rather than giving it fields:

float x1, y1, x2, y2, x3, y3;

instead, you can do:

#include <iostream.h>

#include <stdlib.h>

class Point

{

public:

/* ... Methods, etc, go here */

 Print()

 {

 cout << "x: " << x << " y: " << y << endl;

 }

 float x;

 float y;

} ;

class Triangle

{

public:

 // The only Triangle constructor takes 2 arrays:

 // the first array must contain 3 "x" values, the

 // second must contain 3 "y" values. The first point

 // is located at (x[0], y[0]), the second at

 // (x[1], y[1]), etc.

 Print()

 {

 cout << "Point #1: ";

 a.Print();

 cout << "Point #2: ";

 b.Print();

 cout << "Point #3: ";

 c.Print();

 }

 Point a;

 Point b;

 Point c;

 // could have also done

 // Point rg[3];

} ;

void main(void)

{

 Triangle t;

 t.a.x = 1.0f ;

 t.a.y = 1.0F ;

 t.b.x = 2.5f ;

 t.b.y = 2.0F ;

 t.c.x = 3.14F ;

 t.c.y = 7.8f ;

 Point p;

 p.x = 3f;

 p.y = 2f;

 t.Print();

 p.Print();

}

The "dot syntax" – VERY IMPORTANT!!!

Notice that in both of the above examples (Point, Triangle), you use

the "dot syntax" to access different parts.

p.x, t.a

within t.a, you again use the dot to get to it's subparts (x and y)

It's incredibly important to realize that you use a dot to get to

something's subparts,

WHEN THAT SOMETHING IS EMBEDDED

DIRECTLY INTO SOMETHING ELSE!!

< Draw Memory Diagrams >

You're not being forced to think about this quite yet, since we

haven't hit pointers, but it will show up as soon as we start mixing

pointers and classes.

Passing an object to a method

At this point, students should have seen enough (between last lecture & this one) to both do this, and draw the memory diagram for it.

Separating Interface From Implementation, Part 1

C++ is an older language

Places more stress upon how source code is arranged in the file

Ex: function prototypes – Java/C# doesn't require these

However, this can sometimes be nice – it forces you to organize your code more.

Interface: a description of how your code should work.

Interface is a boundary – e.g., between air and water

Idea is the same – you define a boundary in source code between your class's code, and the rest of the program.

Implementation:

The source code that actually does the work your interface describes

The source code that goes inside it's methods

In C++, you can (and should) separate these:

Your class declaration should contain only data members, method prototypes, and comments explaining how your code should be used.

This is your Interface, describing how other programmers should use your code.

Then, each method's Implementation should be located below the class declaration, in the same file (for now – later on you'll put them into different files).

Comments in the implementation area are notes to you, about how to implement this stuff.

The Point class, and all it's methods, can be used at any point in the file after the class Point declaration.

Even if the Point::Compare method is defined later on.

What this means is that (as long as the implementation is somewhere within your VC++ project), functions like main only need to be given the class declaration, in order to compile.

Again, this is very much like a function prototype

This makes sense, since methods are just special functions.

(When you do the ICEs, I'd recommend first defining the methods outside of the class, like I've done here, before going on to the separate file stuff.)

At this point, you've separated your class into two parts:

An interface, which describes what the class looks like, and how it should be used

1+ implementations (methods), which describes exactly how the class behaves

A really good idea:

Put comments in the class declaration (the interface) which describes how the class should be used by other programmers

Put comments in the implementation for people who will modify the internals of the object.

Example:

#include <iostream.h>

class Point

{

public:

 // Call InitPoint to set this point's x, y fields

	void InitPoint(float newX, float newY);

 // PrintPoint will print out the x, y fields on a single line

	void PrintPoint(void);

 // get_X returns the x field's current value

 // note that if you don't call InitPoint first,

 // you'll get a garbage value.

 float get_X(void);

 // get_Y returns the y field's current value

 // note that if you don't call InitPoint first,

 // you'll get a garbage value.

 float get_Y(void);

private:

	float x;

	float y;

} ;

void Point::InitPoint(float newX, float newY)

{

 x = newX;

 y = newY;

}

void Point::PrintPoint(void)

{

 cout << "X: " << x << "Y: " << y << endl;

}

float Point::get_X(void)

{

	return x;

}

float Point::get_Y(void)

{

	return y;

}

void main(void)

{

 Point p;

 p.InitPoint(0,0);

 p.PrintPoint();

 cout << "Value of p.x: " << p.get_X() << " p.y: " << p.get_Y() << endl;

}

Important Points:

Method prototypes, just like function prototypes, must end in a semi-colon

Method implementations look almost like normal methods, except that you need to put the name of the class (Point), followed by two colons (:: - this is actually the C++ scope resolution operator) immediately before the name of the method (it goes after the return type, if any)

Notice how I don't comment the private members in the class declarations, since the interface is for other programmers to refer to.

ICE: Separate your methods from your class declarations

Separating Interface from Implementation

Putting parts of your class into different files

ASK: How many people know what the preprocessor is?

How many people know what #include does? #ifndef? #define?

If not many, blurb here to explain it, first.

You can put the class declaration in a header file

Put all the public methods at the top of the class.

Comment this how the client is supposed to use the class

#include the header file at the top of any other source code that uses it.

The #ifdef trick

For file Point.h, at the very top, write something like:

#ifndef POINT_H

#define POINT_H

At the very end, write

#endif

<Explain how the preprocessor deals with this>

Then, put the method definitions in a separate source file

Any comments here should be notes for yourself on how it works.

The client will never see the source file

The source file must be part of the project

Inside your main.cpp file, you should then put the line #include "Point.h" at the top

How does C++ know where to find everything?

Header file is #included – so you specifically tell it about the header

Source file must be included in the project – you tell it about the source.

C++ compiles each source file independently

If it see something not in the source file

It leaves itself a note to "fix that up later"

Once everything is compiled

It combines all the separate parts into a single executable

By going through it's 'notes'

Point out that VS only recompiles those sources files that have changed

Directly or indirectly

Thus, it's more efficient for your time to break stuff down into files

This doesn't always work quite right

Hence the "Clean Build" option.

You are required to do this for all homework assignments

1 class declaration (interface) per header file.

1 class implementation per source code file.

ICE: Separate your definition and declaration, then put the definition (implementation) into a separate source file.

�

�

�

�

BIT 143	Review: Classes	Page � PAGE �16� / � NUMPAGES �17�

BIT 143	© 2002, Mike Panitz, ® 2002, Mike Panitz	Page � PAGE �16� / � NUMPAGES �17�

