BIT 143
Lecture 19
Page 10 / 15

Lecture 19

Quiz

Any questions on the last class?

<Display question on the overhead>

Topic #1:

"Table" ADT:

Add(key, data)

Remove(key)

Find(key)

Traverse() // This will do <something> at every item stored in the table.

// The book accomplishes this w/ a function pointer, although we'd

// use a virtual function

So, given the above ADT, we now have a variety of different data structures that we can use to implement it. Which one is best?

Answer: It depends on how we'll use it. In short, we need to pick an implementation whose strengths will cater to your particular needs

To Start: Review by putting up run times for

	
	
	
	Time (Avg)?
	Why?

	Array
	Unsorted
	Add
	
	

	
	
	Remove
	
	

	
	
	Find
	
	

	Array
	Sorted
	Add
	
	

	
	
	Remove
	
	

	
	
	Find
	
	

	Linked
	Unsorted
	Add
	
	

	List
	
	Remove
	
	

	
	
	Find
	
	

	Linked
	Sorted
	Add
	
	

	List
	
	Remove
	
	

	
	
	Find
	
	

	B.S.T.
	
	Add
	
	

	
	
	Remove
	
	

	
	
	Find
	
	

Example: "Brainstorming"

Keeping track of lots of newly added items, won't look for any particular one, but will need to print the list to the screen:

Array/Unsorted – Add is quick, Traverse is fine, and nothing else needs to be supported.

ICE: Given a couple of different situations, pick an implementation

Lecture 18

Quiz

Any questions on the last class?

<Display question on the overhead>

Today's Topic:

Function Templates, Class Templates, Template Classes

Function Templates

Some functions end up doing something that's not just useful, but basically can be applied to a bunch of different data types.

Ex: a "Swap" function – you might want to swap ints, doubles, float, or your own (user-defined) types – classes, struct.s, and unions.

We'd basically have to cut-and-paste the code, then replace int w/ double, etc.

We can actually do this using #defines – this is often called a macro

However, this all happens at the pre-processor stage – it's purely textual, and so it can't do type-checking for us.

It's also trickier to figure out where our syntax errors are since we have to take some extra steps to see the intermediate form that's actually fed to the compiler.

We can get the compiler (not preproc) to do the same thing, except that the compiler will be aware of types, etc.

Example:

#include <iostream.h>

template <typename item>

void Swap(item *pA, item *pB)

{

 item temp;

 temp = *pA;

 *pA = *pB;

 *pB = temp;

}

void main(void)

{

 int numA = 13;

 int numB = 21;

 cout << "numA: " << numA << " numB: " << numB << endl;

 Swap(&numA, &numB);

 cout << "numA: " << numA << " numB: " << numB << endl;

 float flA = 13.1F;

 float flB = 21.0f;

 cout << "flA: " << flA << " flB: " << flB << endl;

 Swap(&flA, &flB);

 cout << "flA: " << flA << " flB: " << flB << endl;

}
Notice that this works great, in part b/c we're using primitive types

"Assignment" means copy the whole thing from one to instance to another – make a bitwise identical copy

Also, the creation of a temporary object has no side-effects

What if we want to use this syntax w/ a user-defined type?

Let's add a couple other parts, as well:

Header1.hpp:

template <typename item>

void Swap(item *pA, item *pB)

{

 item temp;

 temp = *pA;

 *pA = *pB;

 *pB = temp;

}
Main.cpp:

#include "Header1.hpp"

class Food

{

public:

 Food()

 {

 pInt = new int;

 cout << "In the default ctor!" << endl;

 }

 int Get()

 {

 cout << "Getting value at " << pInt;

 if (pInt)

 {

 cout << " which is: " << *pInt << endl;

 return *pInt;

 }

 else

 {

 cout << endl;

 return 0;

 }

 }

 void Set(int a)

 {

 cout << "Setting value at " << pInt << " to " << a << endl;

 if (pInt)

 {

 *pInt = a;

 }

 }

 ~Food()

 {

 cout << "In Food's destructor - deleting memory at " << pInt << endl;

 delete pInt;

 }

private:

 int *pInt;

} ;

void main(void)

{

 int numA = 13;

 int numB = 21;

 cout << "numA: " << numA << " numB: " << numB << endl;

 Swap(&numA, &numB);

 cout << "numA: " << numA << " numB: " << numB << endl << endl;

 float flA = 13.1F;

 float flB = 21.0f;

 cout << "flA: " << flA << " flB: " << flB << endl;

 Swap(&flA, &flB);

 cout << "flA: " << flA << " flB: " << flB << endl << endl;

 Food fA;

 Food fB;

 fA.Set(13);

 fB.Set(21);

 cout << "fA: " << fA.Get() << " fB: " << fB.Get() << endl;

 Swap(&fA, &fB);

 cout << "fA: " << fA.Get() << " fB: " << fB.Get() << endl;

}

Output:

In the default ctor!

In the default ctor!

Setting value at 0x002F1318 to 13

Setting value at 0x002F1348 to 21

Getting value at 0x002F1348 which is: 21

Getting value at 0x002F1318 which is: 13

fA: 13 fB: 21

In the default ctor!

In Food's destructor - deleting memory at 0x002F1318

Getting value at 0x002F1318 which is: -572662307

Getting value at 0x002F1348 which is: 21

fA: 21 fB: -572662307

In Food's destructor - deleting memory at 0x002F1318

Important Points:

 Note that the template <> funcName is how to write out the function prototype You can put this in a header file if you want, but you can't do the normal "prototype in a header file, implementation in a separate source file" thing. Thus, it's best to simply put the whole function definition in the header file. Unlike normal function definitions, the compiler won't complain when you #include the same file in multiple source files.

 You can put as many types in the brackets as you want, and the signature can make multiple references to each type (as above)

 For user-defined typed, the default assignment operator might not be what you want.
In this case it's bad b/c we copy the pointer, instead of cloning the memory that it points to.

 The temp object will invoke the default constructor which may (or may not) be bad.
What if the default constructor has a side-effect, such as incrementing a global count of the number of Food items in the program?

 The temp object will invoke the destructor,which may (or may not) be bad.
In this example, clearly we've deleted memory twice – we could also try and remove the item from a database twice, or corrupt a flat-file, etc.
Notice that simply setting the pointer to NULL afterwards won't help since there's another copy of the pointer that the OTHER object will eventually get around to using.

 In order for the compiler to figure out which of the (possibly overloaded) function templates to use, you need to use each generic type in the signature AT LEAST ONCE!

<Diagram what's going on here – this is important>

A couple solutions to this:

 Overload the assignment operator
Basically, you can write a function that C++ will call whenever it sees the = symbol.
That way, when you try to copy over the pointer, you can actually have it allocate new space, and then copy the ints that are stored, not the addresses of the memory themselves.

 Instead of dealing with objects, deal with pointers to objects
Pointers don’t have constructors, destructors, etc.
In other words, you'd want to write a routine that will Swap two pointers to objects:

Header1.hpp:

template <class item>

void Swap(item **pA, item **pB)

{

 item *temp;

 temp = *pA;

 *pA = *pB;

 *pB = temp;

}

Main.cpp (the new main function)

void main(void)

{

 Food fA;

 Food *pfA = &fA;

 Food fB;

 Food *pfB = &fB;

 pfA->Set(13);

 pfB->Set(21);

 cout << "fA: " << pfA->Get() << " fB: " << pfB->Get() << endl;

 Swap(&pfA, &pfB);

 cout << "fA: " << pfA->Get() << " fB: " << pfB->Get() << endl;

}
Output:
In the default ctor!

In the default ctor!

Setting value at 0x002F2D68 to 13

Setting value at 0x002F2FE8 to 21

Getting value at 0x002F2FE8 which is: 21

Getting value at 0x002F2D68 which is: 13

fA: 13 fB: 21

Getting value at 0x002F2D68 which is: 13

Getting value at 0x002F2FE8 which is: 21

fA: 21 fB: 13

We'll cover "How Do I Overload Operators?" later.

Proto-Class Templates: The Typedef trick

So long as we're careful, and understand how function prototypes work, they're useful & cool.

Sometimes, we'd like to do something similar with a class: be able to change the type the it stores.

We can do this to a very limited degree using a typedef

This is mainly for pedantic purposes – you wouldn't often do this in real life.

However, it is a good example of how to use typedef

Also go over the const int thing, if people haven’t seen this already.

Header1.cpp:

typedef double Element;

const int STARTING_CAPACITY = 20;

class Stack

{

public:

 Stack()

 {

 rgElts = new Element[STARTING_CAPACITY];

 capacity = STARTING_CAPACITY;

 size = 0;

 }

 ~Stack()

 {

 delete [] rgElts;

 capacity = size = 0;

 }

 bool push(Element add)

 {

 if (size == capacity)

 return false;

 rgElts[size++] = add;

 return true;

 }

 Element pop()

 {

 if (size == 0)

 return false;

 return rgElts[--size];

 }

 void Print()

 {

 for(unsigned int i = 0; i < size; i++)

 {

 cout << "Elt: " << i << " : " << rgElts[i] << endl;

 }

 }

private:

 Element *rgElts;

 unsigned size;

 unsigned capacity;

} ;
main.cpp:

void main(void)

{

 Stack st;

 st.push(3.4);

 st.push(4.4);

 st.push(5.4);

 st.push(6.4);

 st.Print();

 st.pop();

 st.Print();

}
Output: pretty much what you'd expect

(Note that this implementation will have the same problems vis-à-vis default constructors, the assignment operator, and destructors, if you typedef a user-defined type with pointers – in which case, the pointer fix would probably be ideal)

However, we can only set the typedef to take the place of something else just once – if we wanted to create a stack of double, and a stack of Foods, we'd be out of luck.

Class Templates

What we need to do is to make our new type (Stack) generic

We need to be able to parameterize the type itself, not just method calls

Note the trivially different syntax

Note also that you can't put the implementation in a separate .cpp file (unfortunately (). However, you can put the implementation outside the class template itself, which at least makes it a bit more readable.

Header1.cpp:

template <typename Element>

class Stack

{

public:

 Stack()

 {

 rgElts = new Element[STARTING_CAPACITY];

 capacity = STARTING_CAPACITY;

 size = 0;

 }

... // This looks exactly like the last code example.

Alternately, we can move the implementation outside the class template declaration, which means we can put comments for other people inside the C.T. decl, like so:

Header1.cpp:

const int STARTING_CAPACITY = 20;

template <typename Element>

class Stack

{

public:

 Stack();

 ~Stack();

 bool push(Element add);

 Element pop();

 void Print();

private:

 Element *rgElts;

 unsigned size;

 unsigned capacity;

} ;

template <class Element>

Stack<Element>::Stack()

{

 rgElts = new Element[STARTING_CAPACITY];

 capacity = STARTING_CAPACITY;

 size = 0;

}

template <typename Element>

Stack<Element>::~Stack()

{

 delete [] rgElts;

 capacity = size = 0;

}

template <typename Element>

bool Stack<Element>::push(Element add)

{

 if (size == capacity)

 return false;

 rgElts[size++] = add;

 return true;

}

template <typename Element>

Element Stack<Element>::pop()

{

 if (size == 0)

 return false;

 return rgElts[--size];

}

template <typename Element>

void Stack<Element>::Print()

{

 for(unsigned int i = 0; i < size; i++)

 {

 cout << "Elt: " << i << " : " << rgElts[i] << endl;

 }

}

main.cpp:

void main(void)

{

 Stack<double> st;

 st.push(3.4);

 st.push(4.4);

 st.push(5.4);

 st.push(6.4);

 st.Print();

 st.pop();

 st.Print();

 Stack<int> st2;

 st2.push(3);

 st2.push(4);

 st2.push(5);

 st2.push(6);

 st2.Print();

}

Output:

Elt: 0 : 3.4

Elt: 1 : 4.4

Elt: 2 : 5.4

Elt: 3 : 6.4

Elt: 0 : 3.4

Elt: 1 : 4.4

Elt: 2 : 5.4

Elt: 0 : 3

Elt: 1 : 4

Elt: 2 : 5

Elt: 3 : 6

Important Points:

 typename & class are completely interchangeable
Stick with one to be consistent

 Note that if you put the implementation separate from the declaration, you need to say both template <typename T> and Stack<T>::

 Again, this particular implementation has all the previous (potential) problems with user-defined types, so be careful.

 The Deitel book uses some bizarre vocab:

o CLASS template is the thing in the header file

o template CLASS are the two instances in main.cpp (Stack<double>, Stack<int>). I don't know if this is common, although it is an official term. I'd prefer you use the phrase "instance of a class template" instead of "template class"

Class Templates Instantiated With User-Defined Types

main.cpp:

void main(void)

{

 Stack<Food> f;

 Food fTemp;

 cout << "Addr of fTemp: " << &fTemp << endl;

 fTemp.Set(13);

 f.push(fTemp);

 fTemp.Set(14);

 f.push(fTemp);

 fTemp.Set(15);

 f.push(fTemp);

 f.Print();

}
 Again, our simple implementation has all the same problems as the function template.

 Class template methods can call methods on the generic type, but you'll get a compiler error if you try and instantiate the class template using a type that doesn't have the method, you'll get a compiler error. For example, you could change Print to:
template <typename Element>
void Stack<Element>::Print()
{
 for(unsigned int i = 0; i < size; i++)
 {
 rgElts[i].Print();
 }
}
However, you'll get a compiler error unless you add the appropriate Print method to your Food class.

 While the compiler is basically doing the cut-and-paste for us, the whole objective was to be able to exploit the compiler's typing system.
Thus, each time we instantiate another template class, we end up essentially creating a new type.
The new type includes it's own copy of the generic code, specialized to it's particular needs.
<<Explain why things like virtual functions, etc, pretty much necessitates one blob of code per instance>>

Mixing Function Templates and Class Templates

Notice how well these two go together – we can now write generic functions to operate on generic types

Sample:

template< typename T>

void doSomethingWithTheStack(Stack<T> *st)

{

 T temp;

 temp = 3;

 st->push(temp);

 st->Print();

}

void main(void)

{

 Stack<double> s2;

 s2.push(20.1);

 s2.push(23.1);

 s2.Print();

 doSomethingWithTheStack(&s2);

}

Using Parameterized Types With Nontype Parameters

Class templates are called generic types – types that can store/utilize any of a collection of other types.

They're also called parameterized types

Meaning that the very type itself can be given parameters.

Compile-time only parameters, due to technical details.

But parameters nonetheless.

So far we've parameterized our class templates with other types.

It's also possible to parameterize them using nontype parameters

For example, the starting capacity of the stack could be set via a nontype parameter to the class template Stack, like so:

header1.hpp:

template <typename Element, int StartingCapacity>

class Stack

{

public:

 Stack();

 ~Stack();

 bool push(Element add);

 Element pop();

 void Print();

private:

 Element *rgElts;

 unsigned size;

 unsigned capacity;

} ;

template <class Element, int StartingCapacity>

Stack<Element, StartingCapacity>::Stack()

{

 rgElts = new Element[StartingCapacity];

 capacity = StartingCapacity;

 size = 0;

}

template <typename Element, int StartingCapacity>

Stack<Element, StartingCapacity>::~Stack()

{

 delete [] rgElts;

 capacity = size = 0;

}

template <typename Element, int StartingCapacity>

bool Stack<Element, StartingCapacity>::push(Element add)

{

 cout << "Addr of add: " << &add << endl;

 if (size == capacity)

 return false;

 rgElts[size++] = add;

 return true;

}

template <typename Element, int StartingCapacity>

Element Stack<Element, StartingCapacity>::pop()

{

 if (size == 0)

 return false;

 return rgElts[--size];

}

template <typename Element, int StartingCapacity>

void Stack<Element, StartingCapacity>::Print()

{

 for(unsigned int i = size-1; i > 0; i--)

 {

 cout << rgElts[i] << endl;

 }

 cout << rgElts[0] << endl; // hack

}

main.cpp:

void main(void)

{

 Stack<float, 20> st;

 float fTemp;

 cout << "Addr of fTemp: " << &fTemp << endl;

 fTemp = 3.0F;

 st.push(fTemp);

 fTemp = 9.0F;

 st.push(fTemp);

 fTemp = 7.62F;

 st.push(fTemp);

 st.Print();

 Stack<float, 30> st2;

 // Etc.

}
I don't think that there's any technical reason why merely changing the number has to require a separate block of compiled code; VC++ actually does generate separate blocks of code.

The C++ spec says that different arguments actually generate different types (different code bases.

You could, instead, simply pass in an extra argument to the constructor, and then do this work by hand, and thus help reduce the amount of space your program requires.

It is possible to get nontype parameters to work with function templates

It seems like it would be of limited utility.

It is useful to 'pass values through' to template classes:

template< typename T, int i>

void doSomethingWithTheStack(Stack<T, i> *st)

{

 T temp;

 temp = 3;

 st->push(temp);

 st->Print();

}

void main(void)

{

 Stack<double, 20> s2;

 s2.push(20.1);

 s2.push(23.1);

 s2.Print();

 doSomethingWithTheStack(&s2);

}

Mixing Class Templates And Inheritance

(From Deitel & Deitel:

 A class template can be derived from:

o a template class

o a non-template (i.e., normal) class

 A non-template class can be derived from a class template

Derriving a class template from a non-template class

Header1.cpp:

class Root

{

 // declare the function to be not just virtual, but pure

 // pure virtual, thus forcing all subclasses to implement it.

 virtual GetClassID() = 0;

} ;

template <typename Element, int StartingCapacity>

class Stack : public Root // etc, etc.

Derriving a class template from a template class:

Header1.hpp:

template <int maxCapacity, int incrementBy>

class ExpandingStack

 : public Stack<double, 20>

{

/* Code Goes Here */

} ;

Derriving a non-template class from a class template:

Header1.cpp: (added to the bottom)

class Stack2 // declaring a non-template class

 : public // that inherits from

 Stack<double, 20> // a template class

 {

 bool isEmpty()

 {

 return !(size == capacity);

 }

 bool isFull()

 {

 return !(size == capacity);

 }

} ;
main.cpp:

void main(void)

{

 Stack2 s2;

 s2.push(20.1);

 s2.push(23.1);

 s2.Print();

}

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 10 / 15

