BIT 143
Lecture 12
Page 1 / 3

Lecture 12
BST-Remove
Work through the remainder of one of the 'remove' routines
Recursion

You can call any function you want.

You can even have a function call itself.

void foo()

{

cout << "We're in foo!" << endl;

foo();

}

<Trace this code> - note the infinite loop.

Ctrl-S will pause output

<demo this on the overhead – note the stack overflow exception>

Note the difference if you run via Red ! (extra VS) vs. in the debugger

Why does this happen? B/c each time it's called, it allocates a bit of space

How to fix this?

Just like with a loop – we need a variable to keep track of how many times it's been called, and stop at some point.

Where do we put the variable?

Start with a global variable, just so it's clear what's going on.

Trace the code if someone suggests a local variable.

int x = 0; // note that we can initialize the global variable to 0

void foo()

{

 cout << "We're in foo! " << x << endl;

 if (x++ < 5)
// note use of post-increment (++)

 foo();

// How will the program differ if

// we put ++ before x?

}

So we can see that a recursive function:

1. Calls itself.

2. Eventually stops calling itself (else crash, etc.)

For any time that we call the recursive function, we'll either

1. Call the function again (recursive case)

2. Don't call itself (base case) since it knows the answer.

Automatic Variables

So what happens if we do use a local variable?

void foo2(int x)

{

 cout << "We're in foo2! " << x << endl;

 if (x < 10)

 foo2(x+1);

}

Put this on the board, start with number 8.

Trace it, and copy the function each time to indicate where we are & what the values of the variables are.

STRESS : There exists only 1 copy of the function inside the computer, ONLY the local variables (including arguments) are created again each time.

Introduce the term 'activation record', and 'stack frame'

Quickie overview of what a stack is.

Returning Values:

How do we get foo3 to return the largest value it prints?

Try this code (it'll loop – can they see it?)

int foo3(int x)

{

 cout << "We're in foo3! " << x << endl;

 if (x < 10)

 foo3(x++);

 return x;

}

Fix it by moving ++ to before the x

If we pass foo3 8, why does it return 9?

Trace the code & see.

But we know that the function foo3 will return an int

The header & prototype say so.

So we can return that.

Add an int y to hold the return value.

Trace the code

But we don't really need the temporary value y.

ICE : Implement Factorial

Why Would You Want to do recursion?

BAD : overhead of function calls – space, time

Can be difficult to understand.

People who are self-educated often don't know this

So you'll have an advantage (
Even so, it'll take you a long time before you can comfortably, confidently create recursive.

Some problems lend themselves to recursion extremely well.

Ex:
Factorial(n) = n * Factorial(n-1)
// This is the recursive case

Factorial(0) = 1

// This is the base case

(D&D, pg 152.)

Ex: Power

double Power(double base, unsigned int exponent)

{

if (exponent == 0)

return 1.0;

return Power(x, n-1) * x;

}

Point out the connection between recursion, and stacks

Recursion is basically a way to get a free stack

Also point out the term tail-recursion

In order for a function to be tail recursive, it must do no work after it makes the call

double TailRecExample(double x, unsigned int n)

{

if (n == 0)

return x;

return TailRecExample (x + 1, n-1);

}

Note:

"What does this code print?" is a frequent BIT 142 exam question

In 143, you'll also be asked to create recursive functions, as well.

Also: proof by induction

You can prove stuff about your program relatively easily

It's a good intro to more theoretical topics

Theory is what differentiates college grads from a self-taught hacker

ICE: Do the remainder, including the "recursively Print the Linked List example"
BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 3

