BIT 143
Lecture 13
Page 4 / 6

Lecture 7
Ownership Of Memory

Normally, whoever creates asks for the memory (via new) has responsibility for returning it to the heap (via delete, or delete [], for arrays)

If you have an object with a pointer to a block of memory that it owns

And you want to replace it with a new block of memory (say, one that someone else has given to you).

You first need to get rid of the block of memory that you own (via delete/delete [])

Then set your pointer to point to the new block.

ICE: Pointer to an object (that contains other pointers); ownership of mem

(Dynamic) Array of Objects
class Point

{

float *x;

float *y;

// This will factor out the code that the constructors will use

init(float newX, float newY);

public:

// default constructor – we need to write this, since we'll also

// write the one w/ 2 args.

Point();

Point(float newX, float newY);

void Print(void);

void SetXY(float newX, float newY);

bool Compare(Point *ptOther);

} ;

Point::Point()

{

init(0,0);

}

Point::Point(float newX, float newY)

{

init(newX, newY);

}

Point::init(float newX, float newY)

{

x = new float;

y = new float;

if (x == NULL || y == NULL)

{

 delete x;

 x = NULL;

 delete y;

 y = NULL;

}

else

 {

 *x = newX;

 *y = newY;

 }

}

void Point::SetXY(float newX, float newY)

{

// Do error checking (if(x == NULL...)) here...)

*x = newX;

*y = newY;

}

void main(void)

{

Point *tri = new Point[3];

if (tri == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

tri->SetXY(0,0);

(tri+1)->SetXY(1,0);

// (*(tri+1)).SetXY(1,0);

tri[2].SetXY(3,3);

}

You’ve seen a dynamic array of, say, ints

Now we want a dynamic array of, say, Points

Note that this will invoke the default constructor on each element of the array.

So what if you want to copy a string?

Your object might be given a pointer to the string so that it can copy it, but is specifically not given ownership of the original memory.

You you need to make a copy of it.

First, use a temp pointer to allocate enough space to copy it.

If this doesn't work, then bail

Second, only once you know that you've got good memory, get rid of the old memory (you allocated it the last time around (you own it (you delete [] it)

Third, copy the new string into the space you allocated

Lastly, set your object's char * pointer to the newly allocated array

ICE: Create an array of Person objects

(Dynamic) Array of Pointers
void main(void)

{

int **Ptrs = new int *[3];

if (tri == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

for(int i = 0; i < 3 ; i++)

 {

 ptrs[i] = new int;

 if (ptrs[i] == NULL)

 {

 cout << "Couldn't get the required memory!" << endl;

 return;

 }

 *(ptrs[i]) = i;

 }

int total = 0;

for(i = 0; i < 3; i++)

 {

 total += *(ptrs[i]);

 }

cout << "The total is: " << total << endl;

}

Note the syntax, particularly the way in which we've got to dereference the array slot.

(Dynamic) Array of Pointers To Objects

#include <iostream.h>

class Point

{

float *x;

float *y;

// This will factor out the code that the constructors will use

void init(float newX, float newY);

public:

// default constructor – we need to write this, since we'll also

// write the one w/ 2 args.

Point();

Point(float newX, float newY);

~Point();

void Print(void) ;

void SetXY(float newX, float newY);

bool Compare(Point *ptOther);

} ;

Point::Point()

{

init(0,0);

}

Point::Point(float newX, float newY)

{

init(newX, newY);

}

void Point::Print(void)

{

if (x == NULL || y == NULL)

{

 cout << "Object not initialized" << endl;

 return ;

 }

 cout << "X: " << *x << " Y: " << *y << endl;

}

void Point::init(float newX, float newY)

{

x = new float;

y = new float;

if (x == NULL || y == NULL)

{

 delete x;

 x = NULL;

 delete y;

 y = NULL;

}

else

 {

 *x = newX;

 *y = newY;

 }

}

void Point::SetXY(float newX, float newY)

{

// Do error checking (if(x == NULL...)) here...)

*x = newX;

*y = newY;

}

void main(void)

{

Point **tri = new Point*[3];

if (tri == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

for(int i = 0; i < 3; i++)

 {

 tri[i] = new Point((float)i, (float)i);

 if (tri[i] == NULL)

 {

 cout << "Couldn't get the required memory!" << endl;

 return;

 }

 }

(tri[0]) ->Print();

(*(tri+1)) ->Print();

tri[2] ->Print();

}

ICE: Create an array of pointers to Person objects.

Quick Summary:

Inheritance expresses “is subcategory of” relationship

Auto-copies data members & methods to subclass

Can cast a subclass * to a base class pointer just fine.
BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 4 / 6

