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Lecture 14
Binary Trees – Removing a Node from the Tree

What if we want to remove an item from the tree?

Target node == node to remove

First, find the target node's parent.

If the target node has no subtrees:

This is easy.  Simply remove it from the parent

If the target no 1 subtree:

Also easy.  Splice it out of the tree, and put it's single subtree into it's place.  This works because the subtree must have the same relationship to the parent as the target does.

If the target has 2 subtrees:

This is the tricky case.

You might try and figure out heuristics for splicing in one or the other subtrees ("If the left subtree itself doesn't have a right subtree…"), but this'll be conceptually messy, and thus hard to get right.

Further, we have to preserve the constraints upon the tree – whatever node we pick, all the nodes in the left subtree must be less than it, everything in the right subtree must be greater than it.

Note: since we've said that our tree doesn't allow duplicates, there will never be another exact replacement.

But since the data we're storing is ordered by the key values, we know that there's gotta be something less than it, in the tree (otherwise there'd be no left subtree ( we'd have chosen an easy case, above)

So we'll REPLACE the target node with the node that contains the next smaller value.

(Aside: We could have chosen the next larger value.  The idea is the same)

So we'll have to find the next smaller value

This is in the left subtree.

Specifically at the rightmost edge of the left subtree.

This node has 1 or 0 subtrees.

If there are numbers less than it, it'll have a left subtree

Otherwise there won't be.

It can't have a right subtree – if it did, we'd continue traversing it.

Thus, we can remove this node easily (using the above case)

Take that node, and splice it into the target node.

Pointer To A Pointer

A neat way of passing a pointer by reference.

ICE: Find in an array

#include <iostream.h>

#include <stdlib.h>

class BinarySearchTreeNode

{

public:

    BinarySearchTreeNode(float d)

    {

        data = d;

        left = right = NULL;

    }

    float                   data;

    BinarySearchTreeNode *  left;

    BinarySearchTreeNode *  right;

} ;

class BinarySearchTree

{

public:

    BinarySearchTree()

    {



sentinel = new BSTNode(-INFINITY);



// WARNING  - sentinel may be NULL

    }


bool Add(int data)

{

if( !sentinel && !(sentinel = new BSTNode(-INFINITY)) )

{


return false; // can't add – no sentinel!


// (we could probably 

}

if (sentinel->right == 0) // tree is empty

{


return (sentinel-right = new BSTNode(data) != 0);

}

BSTNode *pCur = sentinel->right;

while(

}

    BinarySearchTreeNode *  sentinel;

} ;

void FindAndRemoveFromTree(int target)

{


BSTNode *par = sentinel; // parent

BSTNode *pCur = par->right;

while(!pCur && pCur->data != target)

{

par = pCur;

if(target < pCur->data)

pCur->pCur->left;

else

pCur->pCur->right;

}

if(!pCur)

{

return NOT_FOUND:

}

if(pCur->left == 0)

{

if(pCur== par->left)

par->left = pCur->right;

else

par->right = pCur->right;

delete pCur;

return OK;

}

else if (pCur->right == 0)

{

if(pCur==par->left)

par->left = pCur->left;

else

par->right= pCur->left;

delete pCur;

return OK;

}

// Case "2" children of pCur

BSTNode *s = pCur->right, sPar = pCur;

while(s->left)

{

sPar = s;

s = s->left;

}

pCur->data = s->data;

// in-class, did the confusing ternary operator thingee here.

if( s = sPar->left)

sPar->left = s->right;

else

sPar->right = s->right;

delete s;

return OK;

}

}

BinarySearchTreeNode *root;

void FindAndRemoveFromTree(float target)

{

    // We basically end up writing this function twice: once for the

    // special case of removing the root, and then again for the normal

    // case of removing something from inside the tree.  Better ways to do this:

    //

    // The Kruse book makes clever use of reference parameters to pass a pointer

    //      to a node by reference.  Really cool, but we haven't spent a lot of 

    //      time on references, and I don't want to just for this topic.

    //

    // I took that code & modified it to use a "pointer to pointer" instead of a

    // reference to a pointer.  Same idea as the Kruse book, but it took about an

    // hour of class time to explain and most people didn't seem to really get it.

    // 

    // So I'll write the code twice here, and if you've got better ideas about how

    // to go about doing this, please let me know :)

    if (root == NULL)

        return;

    else if ( root->data == target)

    {

        BinarySearchTreeNode *temp;

        // This first if statement actually handles two situations:

        // 1) The root has no children.

        //      root->left is NULL, and so is root->right

        //      This case will properly remove the root node, and set

        //      root to be NULL.

        // 2) The tree has only one child, and that child is a right

        //      child.

        //      This case will properly splice the root out by 

        //      replacing the root with it's single child

        if(root->left == NULL)

        {

            // Remember the starting root

            temp = root;

            // Remove that node from the tree

            root = root->right;

            // Delete the memory used by that node

            delete temp;

        }

        else if (root->right == NULL)

        {

            // If we got to this point, it's because root->left != NULL,

            // and root->right does, so we know that the root has one

            // child.

            temp = root;

            // Remove that node from the tree

            root = root->left;

            // Delete the memory used by that node

            delete temp;

            // This code is almost identical to the prior one - there's

            // got to be an elegant way to factor this.  Any suggestions?

        }

        else

        {

            // This is the more tricky case - we need to overwrite

            // the root with it's sucessor (or predecesor)

            BinarySearchTreeNode *pred;

            BinarySearchTreeNode *parent;

            // Find the next smallest node, then

            // Replace the root with that one.

            // parent will point to the parent of that node.

            parent = root;

            pred = root->left;

            while(pred->right != NULL)

            {

                parent = pred;

                pred = pred->right;

            }

            // pred now points at the target node, and parent

            // now points at the node above it.

            // Copy over the data here

            root->data = pred->data;

            // Then get rid of it, here.

            // If the left subtree doesn't have any right subtrees,

            // then we need to replace the target with the contents of the

            // left node.



if (pRoot->left == pred)



{

            temp = pred;

            pRoot->left = pred->left;

            delete temp;



}



else // parent->right == pred



{

            temp = pred;

            parent->right = pred->left;

            delete temp;



}

    }

    else

        // At this point, we know the target value isn't at the root, and there's

        // at least one node in the tree.  Call this other version to handle

        // the 'normal' case:

        FindAndRemoveFromTreeNonRoot(root, target);

}
Sample Code – Nonsentinel (You don't need to know this)

#include <iostream.h>

#include <stdlib.h>

class BinarySearchTreeNode

{

public:

    BinarySearchTreeNode(float d)

    {

        data = d;

        left = right = NULL;

    }

    float                   data;

    BinarySearchTreeNode *  left;

    BinarySearchTreeNode *  right;

} ;

void FindAndRemoveFromTree(float target);

void FindAndRemoveFromTreeNonRoot(BinarySearchTreeNode *pNode, float target);

BinarySearchTreeNode *root;

void FindAndRemoveFromTree(float target)

{

    // We basically end up writing this function twice: once for the

    // special case of removing the root, and then again for the normal

    // case of removing something from inside the tree.  Better ways to do this:

    //

    // The Kruse book makes clever use of reference parameters to pass a pointer

    //      to a node by reference.  Really cool, but we haven't spent a lot of 

    //      time on references, and I don't want to just for this topic.

    //

    // I took that code & modified it to use a "pointer to pointer" instead of a

    // reference to a pointer.  Same idea as the Kruse book, but it took about an

    // hour of class time to explain and most people didn't seem to really get it.

    // 

    // So I'll write the code twice here, and if you've got better ideas about how

    // to go about doing this, please let me know :)

    if (root == NULL)

        return;

    else if ( root->data == target)

    {

        BinarySearchTreeNode *temp;

        // This first if statement actually handles two situations:

        // 1) The root has no children.

        //      root->left is NULL, and so is root->right

        //      This case will properly remove the root node, and set

        //      root to be NULL.

        // 2) The tree has only one child, and that child is a right

        //      child.

        //      This case will properly splice the root out by 

        //      replacing the root with it's single child

        if(root->left == NULL)

        {

            // Remember the starting root

            temp = root;

            // Remove that node from the tree

            root = root->right;

            // Delete the memory used by that node

            delete temp;

        }

        else if (root->right == NULL)

        {

            // If we got to this point, it's because root->left != NULL,

            // and root->right does, so we know that the root has one

            // child.

            temp = root;

            // Remove that node from the tree

            root = root->left;

            // Delete the memory used by that node

            delete temp;

            // This code is almost identical to the prior one - there's

            // got to be an elegant way to factor this.  Any suggestions?

        }

        else

        {

            // This is the more tricky case - we need to overwrite

            // the root with it's sucessor (or predecesor)

            BinarySearchTreeNode *pred;

            BinarySearchTreeNode *parent;

            // Find the next smallest node, then

            // Replace the root with that one.

            // parent will point to the parent of that node.

            parent = root;

            pred = root->left;

            while(pred->right != NULL)

            {

                parent = pred;

                pred = pred->right;

            }

            // pred now points at the target node, and parent

            // now points at the node above it.

            // Copy over the data here

            root->data = pred->data;

            // Then get rid of it, here.

            // If the left subtree doesn't have any right subtrees,

            // then we need to replace the target with the contents of the

            // left node.



if (pRoot->left == pred)



{

            temp = pred;

            pRoot->left = pred->left;

            delete temp;



}



else // parent->right == pred



{

            temp = pred;

            parent->right = pred->left;

            delete temp;



}

    }

    else

        // At this point, we know the target value isn't at the root, and there's

        // at least one node in the tree.  Call this other version to handle

        // the 'normal' case:

        FindAndRemoveFromTreeNonRoot(root, target);

}

void FindAndRemoveFromTreeNonRoot(BinarySearchTreeNode *node, float target)

{

    if (node == NULL)

        return;

    // In order to splice something out of the list, we need to keep 

    // track of it's parent.

    BinarySearchTreeNode *parent = node;

    while( node != NULL && node->data != target )

    {

        if (target < node->data)

        {

            parent = node;

            node = node->left;

        }

        else if(node->data < target )

        {

            parent = node;

            node = node->right;

        }

    }


// WE didn't find the value in the tree


if(node == NULL)



return;

    // If we found it, do all this

    // node->data == target

    {

        if (node->left == NULL)

        {

            // Splice the node out of the list by replacing

            // it with it's right subtree (note: right subtree

            // may be NULL)

            BinarySearchTreeNode *temp = node;

            if (parent->left == node)

                parent->left = node->right;

            else

                parent->right = node->right;

            delete temp;

        }

        else if (node->right == NULL)

        {

            // If we got to this point, it's because node->left != NULL,

            // and node->right does, so we know that the tree has one

            // child.

            BinarySearchTreeNode *temp = node;

            // Remove that node from the tree

            if (parent->left == node)

                parent->left = node->left;

            else

                parent->right = node->left;

            // Delete the memory used by that node

            delete temp;

        }

        else

        {

            // This is the more tricky case - we need to overwrite

            // the node with it's predecesor

            BinarySearchTreeNode *pred;

            BinarySearchTreeNode *temp;

            // Find the next smallest node (the predecessor), then

            // Replace the node with that one.

            // parent will point to the parent of that node.

            parent = node;

            pred = node->left;

            while(pred->right != NULL)

            {

                parent = pred;

                pred = pred->right;

            }

            // pred now points at the target node, and parent

            // now points at the node above it.

            // Copy over the data here

            node->data = pred->data;

            // Now we've "deleted" the value stored at node

            // All that's left is to get rid of the predecessor

            // by splicing it out of the list.

            temp = pred;

            parent->left = pred->left;

            delete temp;

        }

    }    

}

const int numTests = 8;

// WARNING: 

// This test leaks memory like there's no tomorrow.....

void main()

{

    int i = 0;

    while( i <= numTests)

    {

        root = new BinarySearchTreeNode(10);

        root->left = new BinarySearchTreeNode(4);

        root->left->left = new BinarySearchTreeNode(2);

        root->left->left->left = new BinarySearchTreeNode(1);

        root->left->right = new BinarySearchTreeNode(6);

        root->left->right->right = new BinarySearchTreeNode(8);

        switch(i++)

        {

            // remove value that's not there.

            case 0:

                FindAndRemoveFromTree(40);

                break;

            // Remove a leaf

            case 1:

                FindAndRemoveFromTree(1);

                break;

            // Remove a leaf

            case 2:

                FindAndRemoveFromTree(8);

                break;

            // non empty right subtree

            case 3:

                FindAndRemoveFromTree(6);

                break;

            // non empty leftsubtree

            case 4:

                FindAndRemoveFromTree(2);

                break;

            // non empty subtrees

            case 5:

                FindAndRemoveFromTree(4);

                break;

            // remove the root

            case 6:

                FindAndRemoveFromTree(10);

                break;

            // non empty subtrees, use that loop

            case 7:

                root->left->left->right = new BinarySearchTreeNode(3);

                FindAndRemoveFromTree(4);

                break;

                // non empty subtrees, pred w/ left subtree

            case 8:

                root->left->left->right = new BinarySearchTreeNode(3);

                root->left->left->right->left = new BinarySearchTreeNode(2.5);

                FindAndRemoveFromTree(4);

                break;

        }

    }

}
Perf. Analysis

Main Idea: we want to be able to describe and compare different algorithms and data structures (different programs, really) quantitatively.
Quantitative ( numbers.

Numbers ( Math

Thus, we’ll look for mathematical functions that describe how different programs behave, and then compare the different mathematical functions.

This will save us effort

Given a brand new program, we’ll figure out which mathematical function describes it.  

Most common programs have been analyzed, and so we know which math. function describes any of these programs.

Most of the math functions which describe these common programs have already been compared to the math. function that describes your new program, and so you’ll know how your program compares to these others, without having to manually compare your new program to every other program out there, one at a time.

So, we know how we’ll compare these.  What do we want to compare?

Speed/Time: People are impatient, and it would be nice for programs to run faster.  Running time is the amount of time that (part of) a program takes to execute (start to finish).

Space Occupied: Algorithms require space (memory – e.g., the nodes of a linked list) – it would nice to know how much space any given one will require.

It's more common to analyze algorithms (which are descriptions of how to do something) for time.  But you can do both, and you'll see both as you progress.

Also, we’ll look at some of the terminology that’s used. (less typing, for people)

Linear Search:

Let’s figure out how much time it’ll take to find an element in a linked list.

Start with linear search of linked list:  let’s count how many times each line gets executed:

What if 

 the list is empty?

 the first element matches what we’re looking for?

 the second element matches what we’re looking for?

 the last element 

 the no element matches what we’re looking for?

Looking at this, we notice a couple of things

 The most important factor in the number of lines executed is how many list elements we must traverse.

 As we traverse more and more, the overhead from, say, checking if front == NULL is less and less important.

 Total time also depends on factors outside our control: 
if the list is empty, very little time.  
If the LinkedList is repeatedly asked for stuff that isn’t present, then a lot of time.

 We can analyze each category of requests separately:
Best Case: Either the list is empty, or we’re asked for the first element
Average Case: Assuming a uniformly random (EXPLAIN) distribution of inputs, we will, on average, ask for an element that’s in the middle.
Worst Case: The LinkedList is asked for element that’s not present.

 Further, we'll be looking at this from what appears to be an abstract perspective: N as the number of inputs, as opposed to the exact number of lines / machine instructions executed.
 If we wrote the C++ code differently, we’d have a different number of lines.  
If the compiler optimizes things differently, different numbers of machine instructions will be executed.

Mathematically Analzying Find:

 Do min case: constant time
 Do Avg case:  linear time

 Do Worst Case: 

 Mathematically, show that Avg case and Worst case are within constant distance of each other.

o These functions are more-or-less equal.

o Note: This happens so often, that’s there’s terminology (jargon; shorthand): Big Theta = = “same order of magnitude”

o They’re also both equal to or less than the other: Big Oh.

	Name
	Meaning

	o(n)
	strictly smaller

	O(n)
	smaller or equal

	BigTheta(n) (
	equal

	BigOmega(n) (
	larger or equal


Analyzing Binary Search:

Do Similar for binary search, then compare the two algorithms.

Thus, we can say that for any given array

It will take at most log2(size_of_the_array) passes through the routine in order to find the element, or else determine that it's not there.

Worst Case Running Time = log2(size_of_the_array)

Best Case Running Time = constant time (we find it immediately, or there are no elements in the array)

Average Case Running Time = ½ log2(size_of_the_array)

(Assuming a uniform distribution of requests)

Again, the average & worst case differ only by a constant factor

As the size of the array gets increasingly large, the constant factor will be less and less important.

Thus we'll ignore it (mathematically), by noting that they are asymptotically pretty close to each other, and say that they're BigTheta() of each other.

Comparing the Two Algorithms

In the best case, they're both O(1) (constant time), so in an ideal run, there's no difference.

Further, for each algorithm, the average & worst case times are the same, so we only have to do 1 comparison: is a running time proportional to N faster or slower than a running time proportional to log2(N)?

Clearly, log2(N) is less than N, for large values of N

We can say that log2(N) is O(N)

("Log base 2 of N is Big Oh of N")

("Log base 2 of N is asymptotically less than or equal to N")
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