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Lecture 13
<Quiz>

Binary Trees

You've seen linked lists, which are neat structures.

However, most of the operations on them are O(N)

IsElementPresent will have to examine each element of the LL, so in the worst case it'll examine all N.

LL are relatively easy to construct, and can be quite useful, esp. if you know that you'll never store more than a fairly small number of elements.

What if you're going to store a larger number of elements?

One idea is to modify our LL to instead be a 'tree'

Each node will have more than one link to another node.

Trees are usually draw with the single starting node (the root node) at the top, and then the links fan out as you go down – it looks kinda like the root system of a tree.

We're going to start by looking at a binary tree
Each node has 2 children.

class Object

{

public:


int Compare(Object *other);


void Print();

} ;

class BinaryTreeNode

{

// Assume that I've defined a class named Object, from which

// all my other classes inherit from (directly or indirectly).

// By keeping a pointer to an instance of type Object, I can

// now store instances of any of my other types in this binary

// tree.

public:

BinaryTreeNode( Object *pNewData)

{

pData = pNewData;

pLeft = pRight = NULL;

}

Object 


*pData;

BinaryTreeNode

*pLeft;

BinaryTreeNode

*pRight;

} ;

<Draw Diagram on the board>

Note:

1. Diagrams always have nodes drawn below, and to the L or R of the node

2. We terminate the chain using NULL pointers, just like with LLs

3. Any node at the very end of the tree, with 2 NULL children pointers, is called a leaf node.

4. For a BINARY TREE, we don’t say anything more than this.  Binary tree means ONLY that each node has two children.  So let's look at a specific type of binary tree….

Binary Search Trees (a.k.a. BST)

We'll take the def. of a basic, binary tree, and add some more constraints:

1. All the data stored in the tree is unique
No duplicate values in the tree
We can actually store duplicate data, but it makes it a bit complex, so for now, ignore it.

2. At any given node, the value of the data at that node is greater than any data stored in it's left subtree.

3. At any given node, the value of the data at that node is less than any data stored in it's left subtree.

Note that this will ensure that the tree is ordered.

Assuming you've been given a tree, how would you search it for a value?

Start at the root, which is the current node

If the node's data is what we're looking for, return true to indicate that we've found the value.

If the target data is less than the node's data

Then the target (if it's present) must be in the left subtree.

If the left subtree is empty, return false ( not present

If the left subtree isn't empty, recursively call Find on the left subtree.

If the target's data is greater than the node's data

Then the target (if it's present) must be in the right subtree.

If the left subtree is empty, return false ( not present

If the left subtree isn't empty, recursively call Find on the left subtree.

What's the running time for this?

Worst case: binary tree is actually a linked list (every node only has a left xor right subtree) ( same as LL ( O(N)

Best case: the tree is completely balanced, meaning that for any given node, half of nodes under it are in the left subtree, and half are in the right subtree.

In this case, you'll ignore ½ of the tree after making the first choice. 

You'll ignore ½ of that after making the second choice – only ¼ of the original is left

You'll be down to 1/8 after 3, 1/16 after 4, and 1 / 2X after X nodes

This looks exactly like the binary search pattern ( O( log2(N) ) time to find stuff in a binary tree, IF the tree is balanced.

Inserting New Data Into A Binary Tree

We want to ensure that we don't have any duplicate values

We want to add new data to the tree, while maintaining all the previously listed constraints on it.

Insert(BinaryNode *pNode, Object *pAdd)

{

// Assume that the Object class has a Compare method, which

// will return –1, 0, or 1, just like strcmp would.

int result = pNode->pData->Compare(pAdd);

switch( result)

{


case –1:

{

// The new data is less than the current node, 

// so we'll have to add it to the left subtree

if (pNode->pLeft != NULL)

Insert(pNode->pLeft, pAdd);

else

{

// Left subtree doesn't exist – create it.

// When you code this up for real, make sure to 

// deal with new possibly returning NULL

pNode->pLeft = new BinaryTreeNode(pAdd);

}

break;

}

case 1: 

{

// The new data is greater than the current node, 

// so we'll have to add it to the right subtree

if (pNode->Right != NULL)

Insert(pNode->pRight, pAdd);

else

{

// Right subtree doesn't exist – create it.

// When you code this up for real, make sure to 

// deal with new possibly returning NULL 

pNode->pRight = new BinaryTreeNode(pAdd);

}

break;

}

case 0:

{

// We've been given a duplicate value – this is an

// error!

return Error_Duplicate_Value;

}

}

}

Worst case: inserting sorted data ( You'll get a linked list

Next class we'll look at how to remove stuff from a binary search tree, and then you'll have some time to work on HW, ask general questions, etc.

Traversal : Printing The Tree

So let's say we want to print every item in the tree

If we had a linked list, we'd simply walk a pointer down the entire thing, and print the data at each node.

For a binary tree (whether or not it's a binary SEARCH tree), we'll need to actually do something at every node, which involves following both forks down the tree.

You'll notice that this is very nicely set up to be traversed in a recursive fashion:

1. Call Traverse on the root node

2. Do some work at the current node

3. If the left node isn't NULL, recursively call Traverse on the left node

4. If the right node isn't NULL, recursively call Traverse on the right node

This is called preorder traversal because we do the work prior to doing any work.

Example: preorder traversal:
TraversePre(BinaryTreeNode *pCur)

{

// I'm assuming that I've put a Print method in the

// Object class.

pCur->pData->Print();

if (pCur->pLeft != NULL)

TraverePre(pCur->pLeft);

if (pCur->pRight != NULL)

TraverePre(pCur-> pRight);

}

We can also do the work inbetween the left and right recursive calls

Called an inorder traversal
For a BST, this will result in printing the tree in sorted order.


Why?

Example: inorder traversal:
TraverseIn(BinaryTreeNode *pCur)

{

// I'm assuming that I've put a Print method in the

// Object class.

if (pCur->pLeft != NULL)

TraverePre(pCur->pLeft);

pCur->pData->Print();

if (pCur->pRight != NULL)

TraverePre(pCur-> pRight);

}

We can also do the work after the left and right recursive calls

Called an postorder traversal
Example: postorder traversal:
TraverseIn(BinaryTreeNode *pCur)

{

// I'm assuming that I've put a Print method in the

// Object class.

if (pCur->pLeft != NULL)

TraverePre(pCur->pLeft);

if (pCur->pRight != NULL)

TraverePre(pCur-> pRight);

pCur->pData->Print();

}

You should know these orders, and the main idea behind both trees, and binary trees.

Kruse 10.1.2.3 has a nice example about using a basically unordered tree to represent an expression

We'll focus today on binary search trees.

ICE: Write the insert function

ICE: Write the find function

ICE: Write an iterative BSTFind function.

ICE: Convert recursive inorder traversal function to an iterative function using a stack
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