BIT 143
Lecture 12
Page 1 / 4

Lecture 12
Quiz

Any questions on the last class?

<Display question on the overhead>

Inserting An Element At A Specific Index

At this point, you know how to traverse the list, and to how to stop at a specific index.

What if you want to insert a new item at a certain index?

We'll need to 'splice in' the new node.

We'll need to be very careful not to accidentally sever the list!
In order to put a new node in the list at index N

You need to traverse the list to the node at index N-1

Set the new node's next pointer to be item N

Set node N-1's next pointer to be the new item

Keep in mind, though, that if we're given N = 0, we'll have to traverse to node

-1 (meaning the pointer to the front of the list).

Code to do this will look something like:

// Return true if the node was inserted ok

// Return false if something went wrong.

bool InsertAtIndex(int newData, unsigned int index)

{

LinkedListNode *pNewNode = new LinkedListNode(newData);

if (pNewNode == NULL)

return false;

// Insert at the very beginning, or there's nothing

// else in the list

if (index == 0 || pStart == NULL)

{

// Note that if pStart is NULL (i.e., the list is empty)

// this code still works correctly.

pNewNode->next = pStart;

pStart = pNewNode;

return true;

}

// pStart must be not NULL here

LinkedListNode *nodeBefore = pStart;

unsigned int indexCur = 0;

// while the current index is less than the target – 1,

// and we haven't walked off the end of the list,

// move to the next node.

while(indexCur < index – 1 &&

nodeBefore->next != NULL)

{

nodeBefore = nodeBefore->next;

indexCur++;

}

//Splice it into the list

pNewNode->next = nodeBefore->next;

nodeBefore->next = pNewNode;

return true;

}

<Go over this, using the diagram to illustrate what's going on>

Make sure to hit the following cases:

Insert into an empty list

Insert at index 0

Insert at index 1, with a single-element list

Insert at index 1, with a 2 element list

Insert at index 3, with a 5 element list

Insert at index 5+, with a 5 element list

ICE: Do this.

Remove From An Arbitrary Index

At this point, you know how to traverse the list, and to how to stop at a specific index.

What if you want to insert remove the item at a certain index?

We'll need to 'de-splice out' the target node.

We'll need to be very careful not to accidentally sever the list.
In order to remove the node in the list at index N

You need to traverse the list to the node at index N-1

Create a temp pointer, and point it at node N

Set the next field of N-1 to point to the next field of N, thus removing N from the list.

Delete the node indicated by the temp pointer (or return it, etc.)

Keep in mind, though, that if we're given N = 0, we'll have to traverse to node

-1 (meaning the pointer to the front of the list).

Also, if we're given N+, in a list of N nodes, then we're being asked to delete a node that's past the end of our list.

Code to do this will look something like:

void RemoveAtIndex(unsigned int index)

{

// There's nothing in the list

if (pStart == NULL)

{

return;

}

// We'll need this later.

LinkedListNode *pTemp = NULL;

// Remove the very beginning, with at least one

// other item in the list

if (index == 0)

{

// Remember the current front of the list

// so we can delete it.

pTemp = pStart;

// Move the front to the second item.

// Note that if the list contains just 1 item,

// we've just set pStart to NULL

pStart = pStart->next;

// Get rid of the internal object that held the data.

delete pTemp;

}

LinkedListNode *nodeBefore = pStart;

unsigned int indexCur = 0;

// Walk through the list until we either find the node before

// the one to remove, or until we walk off the list.

while(indexCur < index – 1 &&

 nodeBefore!= NULL)

{

nodeBefore = nodeBefore->next;

indexCur++;

}

// If nodeBefore is NULL, we've been asked to delete the node at

// index N+1 or higher, in a list with only N nodes

// (indexed 0...N-1)

// I.e., we walked off the end of the list.

if (nodeBefore == NULL)

return;

// At this point, nodeBefore != NULL, therefore

// indexCur == index – 1

// Note that if the list contains N nodes, and we were told to

// delete the node at index N, nodeBefore will point to the

// last item in the list(it's next field will be NULL.

// If we're not at the end of the list, de-splice

// the node & delete it

if (beforeIndex->next != NULL)

{

// Remember the node we'll delete

pTemp = beforeIndex->next;

// Remove it from the list

beforeIndex->next = beforeIndex->next->next;

// Delete the target.

delete pTemp;

return; // Redundant, but good in case someone else

 // decides to add some more code, later.

}

// Otherwise, we're at the end of the list, and we've

// been asked to delete the item that's one beyond it

// (which doesn't exist), so we don't have to do anything.

// This else clause is optional, and bad coding practice, but

// has been left here to emphasize that we're not doing

// anything.

}

Examples to run through:

Delete from an empty list

Delete at index 0 (1+ elements)

Delete at index 1, with a single-element list

Delete at index 1, with a 2 element list

Delete at index 3, with a 5 element list

Delete at index 5+, with a 5 element list

ICE: Implement this

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 4

