BIT 143
Lecture 3
Page 1 / 3

Lecture 3
Quiz

Any questions on the last class?

<Display question on the overhead>

Quick Review: #define, vs const ints?

Using A Pointer To An Object

In the same way that you can take the address of a primitive type, you can also take the address of an object, and store it in a pointer.

void main(void)

{

Point p1(0, 0);

Point *ptr2Pt = NULL;

ptr2Pt = & p1;

(*ptr2Pt).Print();

Important Points:

1. Declaring a pointer to an object doesn't get you a new object, just the space required to hold the address of one.
Pointers aren't instances of a class, so they don't have constructors.

2. Just like any other pointer, you should set it to NULL / 0 when you declare it.

3. Just like any other pointer, in order to talk about the object, you need to dereference it. Then you're back to the syntax we saw earlier, with the .Print(), or .whatever.
There's a syntactic shortcut for this, but I'd first like you get comfortable doing it this way.

4. If you dereference NULL / 0 your program will crash. If you dereference a pointer that points to the first 5 MB of memory on a Windows machine, your program will crash.

ICE: Practice this.

Passing classes/structures to methods again, with pointers

A short time ago, you passed a couple of objects by value

This is really bad:

Inefficient

2 copies can get confusing

Can't propogate changes back to the caller.

You've seen how to pass variables by reference (using pointers), and you've seen how to manipulate an object via a pointer, so you've got everything you need to pass an object by reference.

ICE: Passing an object via pointers to a method.
Dynamic Memory: new & delete

So far, everything has been specified at design-time

As you're writing the program, you said 'well, I need another integer'

But you can't predict everything at design time

How many pages of lecture notes will Mike type today?

If you happen to know what malloc/free are

DON'T MIX MALLOC/FREE WITH NEW/DELETE!!!!!
This will only cause pain

Malloc won't call ctor, free won't call dtor

Sometimes it will crash, or result in a memory leak.

If you don't know what these are, that's good (
new: (Actually an operator)

Looks for some memory that isn't being used

If memory isn't found

Evaluates to 0 (NULL)

If memory is found

Returns the address of that memory

(It also calls the constructor, which we'll see later)

delete: (Also an operator)

Programmer gives it the address of some memory that is no longer being used

Calls the destructor on that memory

delete 0 will not do anything – it's safe to call this.

Example:

int *pInt = 0;

// Initialize the pointer to NULL

pInt = new int;
// Try to find memory, note there's no ctor for int

if (pInt == 0)
// If we couldn't find memory

return;

//
then we can't keep going

*pInt = 4;

// Assign 4 to the new space

cout << *pInt;

// Print the new value

ASK: What'll happen if you leave out the pInt = new int step?

Diagram, explain memory corruption, etc.

Pointers and (Dynamic) Arrays

In C++ (and C), these two concepts are really the same thing

A pointer is an address of a memory location

Points may point to just a single object, or multiple adjacent objects.

An array variable holds the address of the first memory location of the array.

Implicit in the definition of array: most likely, there are multiple, adjacent objects at that memory location.

Leaking Memory

In C++, when you forget to delete some memory that you've asked for

The memory continues to be 'owned' by you.

C++ can't distinguish between memory you're still using and memory you've forgotten about.

If you obliterate the last link to it, then your program has no way to get to it.

Meaning that C++ won't retrieve it, you can't get it(it's lost

aka "Leaked"

If you do this enough, your program will crash, when it runs out of memory.

ICE: Have your person object dynamically create either the string, or the int, then manipulate the new thing to accomplish the same thing as it did before.
Pointers and Arrays

In C++ (and C), these two concepts are really the same thing

A pointer is an address of a memory location

Points may point to just a single object, or multiple adjacent objects.

An array variable holds the address of the first memory location of the array.

Implicit in the definition of array: most likely, there are multiple, adjacent objects at that memory location.

Mechanically, the only thing that's really different is the syntax.

So, given:

char arr[4] = { '1', '2', '3', '4' };

cout << arr[0];

prints "1" to the screen

An array element is essentially an address in memory

You can assign it's value (which is an address) to a pointer.

char arr[4] = { '1', '2', '3', '4' };

char *pFirst = &(arr[0]);

cout << *pFirst;

And get the same thing.

So in some ways, you can think of an array as being a pointer whose value you can't change, with different syntax.

ICE: Write a function that will print the first element of an array. (Optional)

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 3

