BIT 143
Lecture 2
Page  1 / 6

Lecture 2
Quiz

Any questions on the last class?

<Display question on the overhead>

if, while, for loops
quickly review these
Functions
declaration, parameters, return values.
Pointers

The single most important feature in C, C++

So far, all the variables you've created were specified at compile-time

But clearly this isn't sufficient

You don't know how much space your program will need

Word: What if the user types 1,000,000 pages, vs. 1 page?

Need to be able to obtain new memory (and use it) as the program runs

"Dynamic Memory", since it was obtained dynamically

We won't be doing dynamic memory today, but that's the goal: you want to build towards this.

A pointer holds a single value

The value is an address in memory

Memory is composed of bits – 8 bits in 1 byte

We 'line up' the bytes in a row, and number them, starting at 0

So an address is really just a number that refers to some particular location in memory.

Note that the pointer doesn't actually get you any memory – it just allows you talk about it.

We'll cover getting memory that later (dynamic memory).

A pointer is a variable

So you can change the value of the pointer

Meaning you can change the address it contains

So you can write code that deals with different parts of memory.

C++ is set up to try and minimize the number of mistakes you make.

Pointers have a type

Point not just to raw memory, but to, say, an integer, in memory.

Notice how 'raw' this is – you need to have an understanding of how your computer works

Both good and bad aspect of C++

Declaring A Pointer Variable

Regular variables is declared like so:

int foo = 1;

int bar = 2;

A pointer to a memory location that contains an integer, is declared like so:

int *pointerToInt;

Important Points:

1. The asterisk (*) is what tells C++ that the variable is a pointer
You CAN'T FORGET THIS.  If you do, you just declared an int (
* MEANS POINTER ONLY INSIDE A VARIABLE DECLARATION!!!!
Outside of one, it means something slightly different (see below)

2. You can name it whatever you want, given the normal naming rules
Again, stick with letters & you'll be fine

3. For now, make sure you've got a type (in this case, int).  
You can work around this (using void), but don't worry about it.

4. Just like any other local variable, pointerToInt will disappear at the end of the function.
5. Just like any other variable, pointerToInt will start off with a garbage value.

Using a Pointer Variable

You can use the assignment operator with a pointer variable.

There's a special value which means "does not point to valid memory"

NULL

In some header file, there's a line that reads: #define NULL 0

So you can write 0, as well.

The book recommends using 0, I prefer NULL

You can choose whatever you want.

pointerToInt = NULL;//pointerToInt doesn't hold the address of anything

pointerToInt2 = 0;  //ditto for pointerToInt2

Unless you can prove that you don't need to do this

It's best to always initialize your pointers to NULL/0

A good way to do this is by combining your decl. & init, like so:

int *pointerToInt = NULL;

So how do you get your pointer to hold the address of something useful?

Right now, we'll start by taking the address of local variables.

Use the "address of" operator: &

& is given some variable, and returns it's address.

(Obviously, it doesn't work on constant numbers, or keywords, etc)

pointerToInt  = &foo; 
// The variable "pointerToInt" is 

// assigned the address of "foo"

<Diagram this on the board.  

Make sure to draw an arrow from pointer to pointee, and explain that this is where the name comes from>

Now that pointerToInt holds the address, how do you get the value of the pointee?

The tricky part: we're going to re-use the asterisk.

*pointerToInt is the now the same as saying foo

BUT ONLY OUTSIDE OF VARIABLE DECLARATIONS!!!!

Like so:

cout << "foo is: " << foo << endl;

cout << "pointerToInt points at: " << *pointerToInt << endl;

Notice that we use the asterisk (*) here, and it means "get the value"

When we use asterisk (*) in the declaration, it means "pointer"

It's very easy to get these confused, so memorize this!!!

Since pointerToInt refers (points) to the same memory location, both lines print "1"

How do you set the value of the pointee?

Same trick: use the asterisk

*pointerToInt = 3;

cout << "foo is: " << foo << endl;

cout << "pointerToInt points at: " << *pointerToInt << endl;

Both lines now print "3"

Since a pointer is a reference to another variable, these operations "de-reference" it, and reveal the value beneath.

So why do we do this?

This example is pretty small – imagine something larger

So far, we've had pointerToInt pointing at foo.

It could have been pointing at bar.

Since pointerToInt is a variable, it still could.

Since we decide what it points to using an assignment statement, we could even decide at run time.

If <something> is true, change the value of foo, otherwise change the value of bar

ICE: Declare an integer, and a pointer to an integer, take the address of the int, and both set and print it.

Enums

Short for 'enumeration' – meaning a list of all possible values.

Useful when you want a limited range of possible values
#define is nice, but you're using an int type, so you can say GT_NUMERIC is 0, but you can't say that only 0, 1, 2 are valid.

W/ an enum, only the values you specify can be valid.

In C++, this actually defines a brand-new type.

Thereafter, you can use it just like a class

Important Points:

1. Enum begins with enum <EnumName> {

2. ends with } ;

3. For each value, you can use any name you want - normal naming rules apply

4. Separate each item with a comma 

5. You can put a comma after the last item, or not, if you want.

6. The first item has the integral value 0, by default

7. Unless otherwise specified, each item has the integral value of 1 + the value of the item before it.

8. You can forcibly assign specific values to individual item, if you want.

There's an example in the ICE.

ICE: Create & use an enum

Using A Pointer To An Object

In the same way that you can take the address of a primitive type, you can also take the address of an object, and store it in a pointer.

void main( void)

{


Point p1(0, 0);


Point *ptr2Pt = NULL;

ptr2Pt = & p1;

(*ptr2Pt).Print();

Important Points:

1. Declaring a pointer to an object doesn't get you a new object, just the space required to hold the address of one.
Pointers aren't instances of a class, so they don't have constructors.  

2. Just like any other pointer, you should set it to NULL / 0 when you declare it.

3. Just like any other pointer, in order to talk about the object, you need to dereference it.  Then you're back to the syntax we saw earlier, with the .Print(), or .whatever.
There's a syntactic shortcut for this, but I'd first like you get comfortable doing it this way.

4. If you dereference NULL / 0 your program will crash.  If you dereference a pointer that points to the first 5 MB of memory on a Windows machine, your program will crash.

ICE: Practice this.

Passing classes/structures to methods again, with pointers

A short time ago, you passed a couple of objects by value

This is really bad:

Inefficient

2 copies can get confusing

Can't propogate changes back to the caller.

You've seen how to pass variables by reference (using pointers), and you've seen how to manipulate an object via a pointer, so you've got everything you need to pass an object by reference.

ICE: Passing an object via pointers to a method.
Dynamic Memory: new & delete

So far, everything has been specified at design-time

As you're writing the program, you said 'well, I need another integer'

But you can't predict everything at design time

How many pages of lecture notes will Mike type today?

If you happen to know what malloc/free are

DON'T MIX MALLOC/FREE WITH NEW/DELETE!!!!!
This will only cause pain

Malloc won't call ctor, free won't call dtor

Sometimes it will crash, or result in a memory leak.

If you don't know what these are, that's good (
new: (Actually an operator)

Looks for some memory that isn't being used

If memory isn't found

Evaluates to 0 (NULL) 

If memory is found

Returns the address of that memory

(It also calls the constructor, which we'll see later)

delete: (Also an operator)

Programmer gives it the address of some memory that is no longer being used

Calls the destructor on that memory

delete 0 will not do anything – it's safe to call this.

Example:

int *pInt = 0;

// Initialize the pointer to NULL

pInt = new int; 
// Try to find memory, note there's no ctor for int

if (pInt == 0) 
// If we couldn't find memory

return; 

// 
then we can't keep going

*pInt = 4;

// Assign 4 to the new space

cout << *pInt;

// Print the new value

ASK: What'll happen if you leave out the pInt = new int step?

Diagram, explain memory corruption, etc.

Pointers and (Dynamic) Arrays

In C++ (and C), these two concepts are really the same thing

A pointer is an address of a memory location

Points may point to just a single object, or multiple adjacent objects.

An array variable holds the address of the first memory location of the array. 

Implicit in the definition of array: most likely, there are multiple, adjacent objects at that memory location.

Leaking Memory

In C++, when you forget to delete some memory that you've asked for

The memory continues to be 'owned' by you.

C++ can't distinguish between memory you're still using and memory you've forgotten about.

If you obliterate the last link to it, then your program has no way to get to it.

Meaning that C++ won't retrieve it, you can't get it(it's lost

aka "Leaked"

If you do this enough, your program will crash, when it runs out of memory.

ICE:  Have your person object dynamically create either the string, or the int, then manipulate the new thing to accomplish the same thing as it did before.
BIT 143
© 2002, Mike Panitz,  ® 2002, Mike Panitz
Page  1 / 6

