BIT 143

Out Of Lecture Review: Classes

Review: Basic Classes
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

Part 1: Use constructors / destructors

Throughout my notes, and in these exercises, I'll use the abbreviation "ctor" to mean "constructor", and "dtor" to mean "destructor".

Continue with the “Course” class that you defined in the previous lecture. In this part of the I.C.E.’s, you should create a constructor which will allow someone to initialize all the fields of a new “Course” object. It should also print out a message identifying which object has been created.

You should also create a destructor, which only has to cout a message saying that the object has been destroyed. The message should include enough information so that you can figure out which object was destroyed.

Try creating 2-3 objects in main, and figure out what order they’re created/destroyed in.

Part 2: Overloading Constructors; Default Constructors.

At this point, your class should have only one, non-default constructor (meaning that your only constructor takes at least one argument). Try creating a local variable (an instance of your class) with a line like:

Course p;

and observe the error message that you get.

Next, add a second, overloaded constructor. This constructor should have no parameters, making it a default constructor. At this point, you should be able to add the above line of code into your program, and have it work fine.

Part 3: Calling One Method From Within Another (Optional)

(“Optional” means that although you may not have time in class to do this part, if you have the time to do this outside of class, you should try it.)

In the previous part(s), you created a class named Course, and gave it some functionality. The previous part of the ICEs asked you to create a second, overloaded constructor. You should create a third method, named something like init, and have each of your other constructors call it. All the actual initialization should happen in the init method.

Part 4: Embedding an object within another object:

Draw A Memory Diagram, With Embedded Classes! (Optional)

Based on the format presented in class, create a simple memory diagram illustrating that the stack of the following program should look like, at the line that's been annotated with a comment:

#include <iostream>

using namespace std;

class PrintingInfo

{

public:

int timesToRepeat;

char p; // character to be printed

} ;

class FormattingInfo

{

public:

bool

fBoldFaced;

PrintingInfo
p

bool

fItalics;
} ;

void Print(FormattingInfo f)

{

for(int i = 0;

i < f.p.timesToRepeat;

i++)

{

// What is the memory diagram of the stack

// going to look like when you've reached

// (but haven't executed) the next line?

cout << f.p.p << endl;

}

}

main()

{

char userChoice = 'y';

int i;

FormattingInfo fi;

fi.fBoldFaced = true;

fi. fItalics = true;

while('y' == userChoice ||

 'Y' == userChoice)

{

cout << "Repeat how many times?" << endl;

cin >> fi.p.timesToRepeat;

cout << "Character To Print?" << endl;

cin >> fi.p.p;

Print(fi);

cout << "Do again?" << endl;

cin >> userChoice;

}

cout << "Goodbye, cruel world!" << endl;

}

You're free to draw this out on paper; you're allowed to use a program (such as Visio) only if you can do it fast enough to complete the whole thing in the allotted time.
Part 5: Passing An Object To A Method (Optional)

(“Optional” means that although you may not have time in class to do this part, if you have the time, you should do it.)

Change the IsTheSame method so that instead of having a parameter that's a copy of the attribute (like in the first code sample of Part 1, above), it will have as it's parameter a copy of another whole object. When you're done, the code that uses the method should look something like:

void main(void)

{

Course bit143;

bit143.Initialize(143);

Course eng101;

eng101.Initialize(101);

if(bit143.IsTheSame(eng101))

{

cout << "These two courses have the same course number!";

}

}

You should remember that access specifiers limit access by class, not by instance. As such, the IsTheSame method that you create in this part can access the private members of the object (specifically, the object that you pass in as an argument). Thus it's not necessary to use the accessor functions within IsTheSame, although it's perfectly legal for you to do so.

Clearly, you can also pass object to methods of other classes, if you wanted to. However, in both of these cases, a major drawback to what you're doing is that each time you pass a completely new copy of the object in this way - we're passing the object by value. Not only is this incredibly inefficient, but any changes made to the copy of the object inside the function aren't reflected in the original object. You should try having your IsTheSame method modify the Course object that's passed in, and then have your main function print out the value of an object before and after making the call to IsTheSame to check this.

Next, we're going to look at how to pass objects by reference, except using pointers rather than references. So we'll have to start by looking at pointers.

Part 6: Separating Interface from Implementation, Part 1

Place your method implementations outside of your class declaration. Make sure that everything still compiles and works ok.

Part 7: Separating Interface from Implementation, Part 2

You should make that you've separate the method implementations from the class declaration, as per Part 3, above. If you've been adding constructors, etc, directly to the class declaration, you should take a couple minutes and separate them out. Then you should create a separate source code file (.CPP file) for all the implementation (don't forget to add it to the project!!), and cut and paste all the methods into that file. Next, you should create a header file (.H file), which will contain the class declaration, and any #include statements that are needed. Make sure to have your source code file (your source file) #include your header file. Make sure that your program still compiles, links, and runs.

Once you've got all that done, you should go back to the header file, and use the #ifndef trick to make sure that your header file will never be included more than once, even accidentally.

Part 8: Define the class "Course"

Define a class named Course, which describes all attributes that classes offered here at Cascadia have in common. You should include the number of students in the class, the hour at which the class begins (use a 24-hour clock), the minute (in that hour) that it begins, and the length (in minutes) of each class session.

In your main function, create three individual instances of the Course class, and assign starting values to each of their fields (member variables). For example, you might create BIT115, BIT142, and BIT143. Then write code that will check and see if the number of students in the 1st course is the same as in the 2nd and 3rd courses, then if that same attribute for the 2nd course matches the number of students for the 3rd course. At that point, your program will have compared all the possible combinations of people. For each pair of Courses, print a message saying if their attributes are the same or not.

Once you've finished this, go on to the next part.

Part 9: Draw A Simple Memory Diagram, Now With Classes!

Based on the format presented in class, create a simple memory diagram illustrating that the stack of the following program should look like, at the line that's been annotated with a comment:

#include <iostream>

using namespace std;

class PrintingInfo

{

public:

int timesToRepeat;

char p; // character to be printed

} ;

void Print(PrintingInfo p)

{

for(int i = 0;

i < p.timesToRepeat;

i++)

{

// What is the memory diagram of the stack

// going to look like when you've reached

// (but haven't executed) the next line?

cout << p.p << endl;

}

}

main()

{

char userChoice = 'y';

int i;

PrintingInfo pi;

while('y' == userChoice ||

 'Y' == userChoice)

{

cout << "Repeat how many times?" << endl;

cin >> pi.timesToRepeat;

cout << "Character To Print?" << endl;

cin >> pi.p;

Print(pi);

cout << "Do again?" << endl;

cin >> userChoice;

}

cout << "Goodbye, cruel world!" << endl;

}

You're free to draw this out on paper; you're allowed to use a program c]'
only if you can do it fast enough to complete the whole thing in the allotted time.
Part 10: Passing An Object To A Function (Optional)

In the previous lectures, you created a class named Person, and gave it some functionality. One of those functions (methods) was a method named IsTheSame, which compares the number of courses that someone else is taking to the number that the give student is taking, like so:

void main(void)

{

Person bob.

bob.Initialize(3);
// bob is a full time student

Person joe;

joe.Initialize(1);
// joe works full time

if(bob.IsTheSame(joe.getNumCourses()))

{

cout << "Bob and Joe are taking the same number of courses";

}

}

In this case, it's reasonably easy to have main call the accessor methods that IsTheSame requires to figure out if the second object is the same as the first. However, by doing this, we're spreading out the responsibility for implementing the Person functionality between the Person class, and anything that uses it (like main). Ideally, we'd like to have all the implementation details located in just one place – the Person class.

Before we do that, we'll try creating a separate function named ComparePeople which takes, as arguments, two objects of type Person, and returns a true if they're equal (in the above example, if they're taking the same number of courses). Remember that since this function isn't part of the class, you won't be able to access any private data in either object. As such you'll have to use the accessor methods you created last class. The prototype for the function should look like:

bool ComparePeople(Person a, Person b);

An example of some code that uses the above function would be something like:

void main(void)

{

Person bob.

bob.Initialize(3);
// bob is a full time student

Person joe;

joe.Initialize(1);
// joe works full time

if(ComparePeople(bob, joe))

{

cout << "Bob and Joe are taking the same number of courses";

}

}
Part 11: Public vs. Private; Accessor Methods

At this point, your main function manipulates the Person objects without ever having to access the attribute (number of courses taken, or name) directly. Further, main should never have a reason to manipulate the attribute of the various people.

In the class definition, change the access privileges on the attribute so that it's private. Make sure to keep all the methods public, or else your program won't compile. Throughout the rest of this course, you should make sure to declare data members (fields) that other parts of the program shouldn't be manipulating to be private, and other fields to be public.

Notice that you should already added accessor methods (the Initialize and getNumCourses methods) in the previous Part, so that your code will continue to work.

Part 12: Defining A Method (Defining A Behavior) (Optional)

(“Optional” means that although you may not have time in class to do this part, if you have the time, you should do it.)

In the last part of the previous class's ICEs, you created a number of objects which you had to initialize in the main method. Since one of the main ideas behind object oriented programming is to put all the code and data into the same place (into the same class), you should create a method (you can name this, say, Initialize) will take as an argument a value to initialize the Person object with. If you decided to use an integer (number of courses taken) as the Person's attribute, you'd have to pass an integer to the method. If you decided to go with the name, you'll have to figure out how to pass a string. You should then change main so that it uses the initialization method, rather than having main do all the work itself.

Next you should add a "getter" method which will return a Person's attribute. Test it out before proceeding to the next part.

Lastly, you should create a third method that returns a true/false value (a bool) named IsTheSame, which has as it's single parameter the appropriate type to receive a copy of another Person's attribute. It might look like:

bool IsTheSame(int numCoursesTakenBySomeoneElse)

You should then modify main to use the getter methods, and the IsTheSame methods, to accomplish the same thing as in part 1. For example, your code might look like:

void main(void)

{

Person bob.

bob.Initialize(3);
// bob is a full time student

Person joe;

joe.Initialize(1);
// joe works full time

Person fred;

fred.Initialize(0); // fred isn't a student

if(bob.IsTheSame(joe.getNumCourses()))

{

cout << "Bob and Joe are taking the same number of courses";

etc.
© 2004, Mike Panitz, ® 2004, Mike Panitz

