BIT 143: In-Class Exercises
Lecture 16
Page 1 / 4

Recursion ; Sorting
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter. When working with a partner, make sure that each of saves your own copy.

Part 1: What Does This Code Print?

void main(void)

{

cout << "End result: " << foo(5) << endl;

}

int foo(int f)

{

cout << "Handed " << f << endl;

if (f <= 0 || f % 2 == 0)

return f;

int i = foo(f – 1);

int j = foo(f – 2);

int max = (i > j?i:j);

cout << "Given " << i << " and " << j;

cout << ", keeping " << max << endl;

return max;

}
Part 2: Computing a value recursively

Create a recursive function which will compute Power(N, Exp). Power is defined as N raised to the exp power. I.e., Power(2, 3) == 8. You're not allowed to use any 'standard' libraries to do this (i.e., you can't use the pow function).
Part 3: Recursively Print A Linked List

During a previous class, you created a linked list, and learned how to insert an element at an arbitrary location within the list. You've also seen how to traverse the entire list, and print each element using a loop.

For this ICE, create a linked list, where each nodes contains an int. You should be able to reuse the code you wrote in prior classes.

Next, create a recursive print function, which will print out all the ints stored in the list. Can you change your function so that it prints the list backwards? What about forwards? Once you've figured out how to print either way, add a bool parameter so that the caller has the choice of printing the list, forwards or backwards.
Part 4: Binary Search

The pseudocode for a binary search is:

Given a target value, an array, and it's size

Initialize max to size-1

Initialize min to 0

While min and max don't overlap

Figure out the index (number) of the slot that's half way between min and max.

If the value at array[half] is what we're looking for

Return "true" to the caller to indicate that we've found the value

Else if the value at array[half] is larger than the target

Clearly, the target is between min and half (or not present)

So assign half-1 to max, and go back to the top of the loop

Else (the value at array[half] is smaller than the target)

Clearly, the target is between half and max (or not present)

So assign half+1 to min, and go back to the top of the loop.

End If

End of While loop

The only way we could make it to this part of the function is if we never found the target value.

Return "false" to the caller to indicate that we've found the value

Create a function named FindIntegerBinary, that has the following prototype:

bool FindIntegerBinary (
int target,

int array[],

int array_size);

You should test the function (once you've written it) like so:

const int ARRAY_SIZE 5

void main(void)

{

// you'd have to initialize this, first.

int testArray[ARRAY_SIZE] ;

int usersNumber;

cout << "Type a number to search for:" << endl;

cin >> usersNumber;

if (FindInteger(usersNumber, testArray, ARRAY_SIZE))

cout << "The number is present!" << endl;

else

cout << "The number cannot be found! :(" << endl;

}
Part 5: BubbleSort

The pseudocode for BubbleSort is:

Loop N times, where N is the number of elements in the array

From the second slot of the array up to the last slot:

If (the element in this slot less than the element

 in the slot below it)

Swap the contents of the slots
Implement Bubble Sort, given the following function prototype:

void BubbleSort(int *pArray, int size, int *pNumberOfSwaps);

Your BubbleSort should sort the array into ascending order (smallest element in the slot 0, largest element in slot size-1). In the case of duplicate values, it doesn't matter which duplicate goes first – for this reason, you sometimes hear the term "nondescending" used instead of "ascending".

pArray will point to an array of ints; there are size ints in the array. Each time BubbleSort decides to swap two values within the array, increment the int that is pointed to by pNumberOfSwaps.

Test your routine out by calling it on arrays of size -1, 0, 1, 5, and 8. Make sure to vary the values that you put into the arrays.

Part 6: Selection Sort

Implement selection sort, given the following function prototype:

void SelectionSort(int *pArray, int size, int *pNumberOfSwaps);

pArray will point to an array of ints; there are size ints in the array. Each time SelectionSort decides to swap two values within the array, increment the int that is pointed to by pNumberOfSwaps.

Test your routine out by calling it on arrays of size -1, 0, 1, 5, and 8. Make sure to vary the values that you put into the arrays.

Part 7: Insertion Sort

Implement insertion sort, given the following function prototype:

void InsertionSort(int *pArray, int size, int *pNumberOfSwaps);

pArray will point to an array of ints; there are size ints in the array. Each time InsertionSort decides to swap two values within the array, increment the int that is pointed to by pNumberOfSwaps.

Test your routine out by calling it on arrays of size -1, 0, 1, 5, and 8. Make sure to vary the values that you put into the arrays.

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 4

