BIT 143: In-Class Exercises
Lecture 9
Page 2 / 2

Binary Trees, Part 1

Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter. When working with a partner, make sure that each of saves your own copy.

Part 1: Binary Tree: Insert, Find: The Algorithm
For each of the following cases, show what the resulting binary search tree should look like, after you add values in the specified order, and then find the given value:

Please draw out the trees on a separate sheet of paper.

	1.
Insert: 10, 4, 6, 8, 2, 1
Find: 8

	2.
Insert: 10, 4, 3, 2, 1
Find: 1

	3.
Insert: 8, 4, 10, 1, 5, 9, 12
Find: 12

	4.
Insert: 8, 4, 10, 1, 5, 9, 12
Find: 13

Part 2: Binary Tree: Insert

In order to be able to traverse a binary search tree, you first need to build it. While the lecture notes contain a sample implementation of the Insert function, I'd like you to try and write your own version, from scratch. It would be ok to implement Insert as a function, and keep a global pointer to the root of the tree. In order to make your life a bit easier, it would be perfectly fine to use the following as the definition of your nodes:

class BinaryTreeNode

{

public:

BinaryTreeNode(int newValue)

{

data = newValue;

pLeft = pRight = NULL;

}

int

data;
// ints are easier to compare

BinaryTreeNode

*pLeft;

BinaryTreeNode

*pRight;

} ;

Write test code that adds the following values to your tree: 3 5 7 6. Before executing the code, draw out (on paper) what the tree should look like.

A good way to test your insert routine would be to create a PrintTree routine, and have it print everything in your binary search tree, using an inorder traversal.

Part 3: Finding A Value In The Tree

Once you've finished Part 1, create a second function named Find, that has two parameters: an int (the value to search for), and a pointer to a BinaryTreeNode. It should return true if the specified value is present, and false otherwise. You should be able to accomplish this by modeling your code off of what you saw in class, although I'd recommend doing as much of this from memory as possible.

Part 4 : Iterative Find Function

Go back and examine the code that you wrote for part 2. Notice that since you don't really need to save any state, you don't really need to have it be recursive. Create a new function, named FindIterative, that uses a loop instead of recursion to find the given element.

Part 5: Recursive Traversal Function

For part 1, you should have created the PrintTree function, which does an inorder traversal of the Binary Search Tree, using recursion. Create a new function, named PrintTreeIterative, also prints out all the nodes, using an inorder traversal order. However, instead of writing this as a recursive function call, use a loop, and a Stack (of pointers to BinaryTreeNodes) to accomplish the same purpose. This will be a bit more efficient than a recursive function because you won't have the overhead from the function calls.

Before you try writing the code for this part, spend some time thinking about how to use the stack to simulate the recursive calls. If you don't have a solid game plan going into this, you won't be able to start it. Feel free to ask the instructor for hints, or verify that your approach sounds reasonable before you start coding.

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 2 / 2

