BIT 143
 In-Class Exercises
Lecture 3

Pointers, Dynamic Memory ; Arrays & Strings
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

Basic Pointers & Functions
Part 1: Quick Practice Using Pointers (Optional)

You should make sure that you've got the basic idea behind pointers by creating a function that declares an int, a double, and a char, which you'll have to initialize to reasonable values. Create as many pointers as you need to in order to obtain the address of each local variable. You should then print out the value of each local variable, the address of each, and then the value using the pointer.

Question: When you try to print out the address of the char (using your char *), what happens?

Hint: What if someone told you that a string in C++ is an array of characters such that the last character in the array is a special value, and that strings are usually referred to (in code) using the address of the first character?

Part 2: A Quick Pass-By-Reference Exercise (Optional)
You should start by making sure that you're able to pass variables by reference using pointers. Create a function named ModifyFloat, which should take a single pointer to a float, and return nothing. Have your ModifyFloat function increment the value of the float referenced by the pointer (don't increment the pointer itself, which is also a legal operation). Print out the value of the local variable before and after you call ModifyFloat in main.

Part 3: Write a swap routine that will exchange 2 integer values

Examine the following code:

void Swap(int a, int b)

{

int temp

temp = a;

a = b;

b = temp;

}

void main(void)

{

int num1 = 1, num2 = 2;

cout << "num1 is: " << num1 << "num2 is: " << num2 << endl;

Swap(num1, num2);

cout << "num1 is: " << num1 << "num2 is: " << num2 << endl;

}
What gets printed? You should be able to successfully predict what will happen without having to actually execute the code. You should also be able to explain why the Swap function doesn't swap the values stored in num1 and num2

For this exercise, you want to modify the above code to pass the integers num1 and num2 by reference, meaning that you want to give the Swap function a way to talk about main's local variables. In C++, we can do this using reference parameters, but using pointers is very common in industry, and so you want to be comfortable passing variables by reference using pointers. Further, for throughout this course you should look for opportunities to use pointers instead of references.

Building on what was presented in class, you should modify the Swap routine so that its two parameters are pointers to integers, and so that it exchanges the values that its parameters point to (again, don't swap the pointers themselves).

You should then (optionally) draw a memory diagram of what the stack and the heap will look like when you're on the last line of the Swap routine.

Part 4: More Pointer Practice (Optional)
You should be able to generate, from memory, a function named MaxByRef that communicates the larger of 2 integers back to the caller using a pointer. MaxByRef should have 3 parameters: 2 integers, and a pointer to an integer. It should figure out which of the two integers is larger, and set the value of the integer that the pointer refers to be that larger value.

Some psuedocode that uses this might look like:

int x = 0;

int y = 10;

int larger;

MaxByRef(x, y, &larger);

cout << “The larger of “ << x << “ and “ << y << “ is: “ << larger << endl;

Part 5: Returning a Pointer
Create a function named MinByRef that returns a pointer to the larger of 2 integers. MinByRef should have 2 parameters, each of which is a pointer to an integer. It should figure out which of the two integers (not the pointers) is smaller, and return the value of the pointer that points to that integer.

Some psuedocode that uses this might look like:

int x = 0;

int y = 10;

int * min;

min = MaxByRef(&x, &y);

cout << “The smaller of “ << x << “ and “ << y << “ is: “ << *min<< endl;

Part 6: Something You Should NEVER EVER EVER Do
Download the C++ file named MemoryError.cpp from the website. Create a project and it the file to that project. Compile and run the project.

Try and figure out what’s going wrong, and why. Feel free to use the debugger, if you find it helps. Also feel free to draw a memory diagram (or even just an informal picture) to illustrate exactly what’s going wrong.

Remember this error, and make sure that you never, ever, ever do this. (
Hint: In VS.Net 2003, you’ll get a helpful warning.

Part 7: Creating a class to model a student's grade

Given the code below, create (in main) several local variables that are Grades. Make sure that at least one represents a numeric grade, and at least one represents an audit. Do whatever exercises you feel you need to in order to understand enums, including such things as adding members to the enum, creating new enums, or re-writing this example from memory.

enum GradeType

{

GT_NUMERIC,

GT_AUDIT,

GT_WITHDRAWAL,

} ;

class Grade

{

GradeType
m_which;

float

m_numericGrade;

public:

Grade(GradeType type, float num)

{

m_which=type ;

m_numericGrade=num;

}

PrintGrade()

{

switch(m_which)

{

case GT_AUDIT:

cout << "Audit!" << endl;

break;

case GT_WITHDRAWAL:

cout << "Withdrew!" << endl;

break;

case GT_NUMERIC:

cout << "Student got " << m_numericGrade << endl;

break;

}

} ;

© 2002, Mike Panitz, ® 2002, Mike Panitz

