BIT 143: Assignment 2
Page 1/4
10/18/2005

BIT 143 – ASSIGNMENT 2

DUE DATE: Wednesday, Oct 21st
Classes, Strings

Part 1: Writing the class:

Via the website, you've been provided with two projects: one is a fully functional, earlier version of (Cascadia alumni) Jay Green's text-adventure game (behind the link named CascadiaGameV1.zip). This project should compile & run just fine, and is provided so that you can play around with the game, before you do anything with it.

You've also been provided with CascadiaGameV2Skeleton.zip
 , which contains an 'in-progress' version, that has some specific pieces removed. Your overall goal for this assignment is to complete the code needed to make CascadiaGameV2Skeleton.zip complete, correct, and functional.

HOWEVER, instead if diving directly into this large body of code, I want you to first examine (in detail) the provided file named CommandStore.h. For this part of the assignment, I want you to implement this class, and write test cases for it, so that you've got some reasonable assurances that it can deliver at least a minimal level of performance. Your Think Critically paper for this assignment should focus on explaining what you've done in order to make sure that things work correctly.

ONLY ONCE YOU'VE GOT THIS WORKING SHOULD YOU GO ON TO PART 2!!!!

As a quick overview, the class that you're creating will serve as a 'Dictionary' – much in the same way that you can take a word (a key) and look up it's definition (the data that corresponds to the key), the CommandStore can be set up so that you give it a C-style string (the key) and it's corresponding integer (the data), and then later on, you can give the CommandStore the key, and it will give you the corresponding integer. The code demonstrates a typical use of a Dictionary, although for assignment 3 you may end up improving on the design of the CommandStore to make it substantially more object oriented.

Part 2: Integrating the module into the existing code base:

Assuming your code works, and works in the same fashion that your instructors code does, this part should be a snap – you simply put your code into the provided CascadiaGameV2Skeleton (thus filling out the skeleton), everything should compile, and everything should work together.

If not, then your task will be to figure out why things don't work, and fix them.
Part 3: Self-Reflection : Think Critically

Cascadia Community College has a defined 4 Learning Outcomes that are intended to guide your learning. The Learning Outcomes are college-wide themes that can be found in any class you take at Cascadia. For example, instead of only lecturing, in this class you spend a lot of time thinking critically by actively solving new problems, figuring out why your code doesn't work, and understanding why other parts of your code does work. When you go home, you should continue to think critically by analyzing your programs, figuring out how to make them more efficient, and by improving the design of them. By making you aware of these goals, and showing how your experiences here are connected to these outcomes, it is hoped that you will become more aware of how you learn, and ultimately enable you to drive your own education. The 4 Learning Outcomes are listed in both the Schedule of Classes, and the Student Handbook.

For this assignment, you’ll focus on the Learning Outcome of “Thinking Critically”. The Student Handbook explains why Critical Thinking is important when it says that “Reason and imagination are fundamental to problem solving and the critical examination of ideas.” One way to demonstrate the ability to Think Critically is to “Recognize and solve problems using creativity, analysis, and intuition.”

In part 1 you created a program; now you should test it. In addition to verifying that your code does what you think it should by testing it, you should document what you've done, so that you can prove to other people that your code works reasonably well. In a separate Word document entitled A2.0_CriticalThinking.doc, list the inputs that you chose to test for each method, what each input causes your test program to output, and what portion of your code this input/output verifies the correctness of. You should briefly explain why your inputs collectively verify the correctness of your code. I would recommend using a table in Word that looks something like the following:
	Input
	Output
	What Does this Verify?

	
	
	

Group Work, Commenting:

You are not allowed to work in groups for this assignment. You should start, finish, and do all the work on your own. If you have questions, please contact the instructor.

Additionally, you should aggressively comment your code, paying particular attention to areas that are difficult to understand. If you found something to be tricky when you wrote it, make sure to comment it so that the next person (the instructor, who's grading you) understands what your code is doing. It is not necessary to comment every single line.

The purpose of new requirement is to both help you understand, and have you demonstrate, a thorough understanding of exactly how your program works.

Every file that you turn in should have:

· At the top of the file, you should put your name (first and last), the name of this class (“BIT 143”), and the year and quarter, and the assignment number, including the revision number, which starts at 0 (“A2.0”). If you’re handing this in again for a regrade, make sure to increase the minor version number by one (from “A2.0”, to “A2.1").

In general, you should make sure to do the following before handing in your project:

· All variables used should have meaningful names.

· The code should be formatted consistently, and in an easy to read format.

What to turn in:
· A single electronic folder (a directory). This folder should contain:

· The source code for the classes, plus your 'main' function
Remember that for each class, you should put it's declaration into the header (.h) file, and the implementation into the source code (.cpp) file. Each header file should contain at most one class declaration (the interface), and each source file should contain the implementation for at most 1 class.
In addition to the source files for you class implementations, you'll need a main.cpp file, which contains your main function, and any other functions you care to write.
I would prefer that you include the project files – stuff ending in .SLN and .VCPROJ, so I can build your project more easily.
· A Word document that contains your short paper on Critical Thinking.

· You have to name the folder with your last name, then first name, then the assignment number (both the major version – 2, and the minor (revision) number – 0). Example: "Panitz, Mike, A2.0"

· You should not include the Debug directory, or anything from it. I will dock you a couple points if you do. This directory is generated from your source, and usually about 10 MB for a trivial program. Also, you don't need to include your .NCB file, if it's present.

How to electronically submit your homework:

On the course homepage, there is a link to a document that describes how to use the SourceGear Vault system for handing in homework. That link is reproduced here:

http://freire.cascadia.ctc.edu/facultyweb/instructors/mpanitz/2005Fa/BIT142/Handouts/SCC-Handin/Source_Code_Control_Homework_Handin.doc
Follow the directions there to submit your homework.
BIT 143: Assignment 2
Page 1/4
10/18/2005

