BIT 265

Lecture 01
Go over the syllabus, briefly

Focus on the grading stuff

10 points per day: 8 points participation, 2 points quiz

Mastery Approach

Go over the 'presentation' idea

We'll pick topics in next class, after people have had a chance to look at the algorithms

Go over the 'game programming' assignment theme

Implement 2

Use 2

License details

AVL Trees - Add
	Please note the following errors in the AVL handout:

· Overall the pseudocode assumes that there's always a node above the ones we're changing. This will break if we need to rotate the root of the tree
FIX: Make sure to mention the idea of a 'sentinel node' or 'dummy node' that will always be the root of the tree (so this algorithm works without a complete copy of the code for just the root case); mention also ref parameters (which can also fix this problem)

Briefly review BSTs

· Add

· Have them work on the board to add 5, 1, 10

· DEFINE: a tree is ‘broken’ if you can’t find a value that’s present in the tree (i.e., not every node obeys the BST property)

AVL Trees: (Single) Rotations
· Don't talk about AVL tree property quite yet

· Do cover rotations – have them follow the hand-out to do a couple of left-rotations

· Socratic method

· Does the left rotation break this particular tree?

· i.e., can you still find everything in the tree?

· Add a couple more values, rotate something further down in the tree

· Did the left rotation break that?

· Left rotation works ok on these particular trees, but will they work on every single possible tree?

· Use that diagram, and the relationship between the rotated nodes (A,B) and the subtrees (T1, T2, T3) to show that A, B, and the subtrees all still obey the BST property
· What does rotating do?

· Decreases the height of one subtree while increasing the height of the other

AVL Trees: Theory/Background
· Next, talk about AVL-tree property

· Next, talk about left/right/even tilt markers

· (also, the -1/0/+1 scheme)

· Go over running times of insert / etc

· (i.e, if your tree magically exhibited this property, what would the running times be?)

Overall idea:

· Use tilt markers to keep track of how unbalanced the children are

· If we make the left & right child off by 2 then do a rotation (and the parent will then be balanced)

AVL Trees: Implementation
· Build up the insertion pseudocode for add.
Once we find where to add the node we look up the tree:
· Oppositely tilted parent becomes even and we stop
· Illustrate with diagrams on the handout

· Even parent gets tilted and we continue up the tree
· Illustrate with diagrams on the handout – may need to scribble
· <Go over the next two cases using pictures>

· Parent is tilted towards new node, and grandparent is tilted towards the parent:

· grandparent and parent are tilted in the same direction (i.e., along the ‘outer edge”): single rotation and we stop
· grandparent and parent are oppositely tilted (i.e., parent tilts towards inner edge):
· Illustrate why a single rotation doesn’t actually fix anything

· Instead, do a double rotation (so the outer edge is the long one)
and then we stop
AVL Trees: Double rotations

· Show how single rotations don’t change the height of the subtree when the ‘inside’ child is the heavy one

· Show double-rotations

· Look through the code that triggers this -
AVL Trees - Delete

· Review remove from normal BST

1. 50, 10, 40, 45, 100, 200, 250, 300
2. Remove 300 (leaf)

3. Remove 200 (single child)

4. Remove 50 (two children, replace value with next smaller value – 45)
5. Remove 45 (still two children, replace with next smaller – 40, but now needs to adjust parent’s left rather than parent’s right)
· AVL overview
· We remove like a normal BST remove, then we rebalance based on the structure

· 2 children case: balance the NODE that was removed, not the one that was overwritten
· The node deleted will be either a leaf or have just one subtree

· Since this is an AVL tree if the deleted node has one subtree, then that subtree contains only one node

· Traverse up the tree from the deleted node checking the balance of each node
· Many of the cases kinda feel like the opposite of Add

· <Go through the cases briefly, by illustrating code execution as a group>

