BIT 265
C++ (Pointers)
Notes for the instructor

Important differences w/ Java/C#/dynamic languages
· Manual memory management vs. Garbage collection
· Raw memory access (pointer arithmetic, loose typing, etc) vs. opaque memory references
· Class defines a type (a 'memory stamp/format') and code then decides where to put it (in the heap, or in the stack/object/surrounding 'context') vs. Java/C# classes must be allocate in the heap
· B-Trees make a whole lot of sense in C++ because you can actually store everything the disk sector 'image'; BTrees make almost no practical sense in C#/Java because any arrays, strings, or objects won't be stored in the 'image' (although you could serialize them to/from disk)

Example:
int x;
int nums[5];
int *nums = new int[3];
int cNums = 3; // point out the lack of .Length
· Emphasize that * will mean two things – here it means declaration
· <Diagram this, stack & heap>
· Note that C++ does NOT initialize variables for you (either x, or the array contents)

For(int I = 0 ;I < 5; i++)
 Cout << Nums[i] << endl;
· Talk about lack of bounds-checking: over the top & negative indeces

Int *ptr = nums;
// print example
For(int I = 0 ; I < cNums; i++)
{
	Cout << *ptr << endl;
	Ptr++;
}
· Emphasize that HERE * means 'derference' / follow the arrow
· ++ moves up by the size of an int, NOT by a single byte
· Show them the results of moving up by a single byte (last 3 bytes of current int plus first byte of next int)

Fade Guidance:
· Jointly create a 'sum up' program

EXERCISES:
· Find the min
· Find the max
· Print in reverse order
· Find a target value
· BubleSort
· Etc

For(int I = 0 ; I < cNums; i++)
{
	Cout << *(ptr + i) << endl;
}

Fade Guidance:
· Jointly create a 'sum up' program

EXERCISES:
Same as for prior topic (use the same ones so they can scaffold AND see the differences)

Next topics:
· Equivalence of *(ptr + i) and ptr[i]
· & operator
· Why you can't get free memory by taking the address of local variables
· [bookmark: _GoBack]

