BIT 265

HeapSort Exercises
Some Quick Tips:

· Whenever you’re dealing with an array-based heap you should draw out BOTH the in-memory view of the array itself AND the abstract binary tree that the array represents. This will help you understand what’s going on in the array (and why).

· When you're asked to 'simulate' something, make sure that you can write it out on paper/whiteboard, keeping track of every single variable for every function/method.
· Each time the array is changed (i.e., any element in the array is modified, including swapping two elements), remember to update BOTH the array and the abstract binary tree.
The Exercises:

1. Starting with an A array containing { 100, 12, 10, 97, 98, 2, 7, 70, 90, 80, 82, 1, 0}, simulate (by hand, on paper) Heapify(A, 1);

2. Starting with an A array containing { 100, 99, 10, 97, 98, 2, 7, 70, 12, 80, 82, 1, 0}, simulate (by hand, on paper) Heapify(A, 1);

NOTE: This example was put together so that you’re clear on exactly what happens when the Heapify() method does NOT swap the parent and a child.

3. Starting with an A array containing {0, 1, 2, 7, 10, 12, 70, 80, 82, 97, 98, 99, 100 }, simulate (by hand, on paper) BuildHeap(A);
(You may want to save the end result – you’ll use the heapified array in both of the following two questions)

4. Starting with the "heapified" array that you ended up with at the end of the exercise #3, show the result of running the HeapExtractMax routine, twice.

5. Starting with an A array containing {0, 1, 2, 7, 10, 12, 70, 80, 82, 97, 98, 99, 100), simulate (by hand, on paper) HeapSort(A);
(You may start with the "heapified" array that you ended up with at the end of the exercise #3)

