A Quick Tutorial on Using The Debugger
Overview:

This tutorial aims to quickly orient you in the use of a typical debugger, using Microsoft's Visual Studio.Net development environment. Just about every other debugger that the author is aware of offers a similar feature set, although the user interface will obviously be different.

On the website, you should download the project files and Main.cs, put them all in the same folder, and open the Debugger_Example.sln file. Open the sole source file, Main.cs, so that your window looks something like:

[image: image1.png]Fle Edt Vew Projct Buld Debug ook Window Help

=181]

I R & S2[4% %K.
& statpoge | Malncs | LooksGoodTattecs |
32 [2ebugger_Example.classt =] [5®Mein(stringl args)
g 1 using System;
2 1 e =S
£ References
3 nemespace Debugger_Example et
4] ¢ F) Assembyifo.cs
SO class Classi 7] LooksGoodToMe.cs.
— [«) mancs
B [STaThread]
Eg static void Main{string[] args)
B ¢
10 int () s = mew ine(] (S, 6, 1, 3, 8, -1, 0, 10}
P
12 Printirray (nums) ;
P Conmole. Uriteline (reersssssnssenssssssnssenssssssnssansan);
11 Bunblesort (nuns) ;
1 Printirray (nums) ;
ie Conmole. Uriteline (reersssssnssenssssssnssenssssssnssansan);
1
18 // Uncoment the following line, and try out your debugging skilla!
1 77 Prograntobenug. provlen() :
20)
21
22] public static void Printirray{int[] thedrray)
‘ |‘| T 5000 33 Clss .. | ndex |
[Output x
ebug =]

"Defaultbonain’: Loaded 'c:\vindous\microsofc net\franevork\vl 1 4322\nscorlib dll', No symbols Loaded

The program '[3648] Debugger_Sxample.axe’ has exited with code 0 (0x0]

‘Debugyer_Exsuple': Loaded 'Y:\Course_Cores\BIT_L4Z\Handouts\Debugger_Tutorisl\Debugging_Practice\Debugyer_Exsuple\bin\Debug\Debugyer_Exsup

. o

=

L] Output | G i Resuks 1 |) Indes Resuts |

Basic Mode Of Interaction:

Fundamentally, all debuggers operate the same: they temporarily stop a running program (technically, a running process), at which point you can examine the process's memory. This includes having it tell you the value currently held in different variables, being told what's on the call stack (which tells you how you get to the current point in the program), and even examining raw memory with no help from VS.Net
Running (And Stopping) The Program
Under the "Debug" menu, you've got two options for starting your program.
[image: image2.png]Debugger_Example

Ble

icrosoft

Edt Vew Project Buid

st Page |Maincs | Looscol

[220ebusse Evampl Cisst |

ool X

1 using Syste:
2
3 namespace Def

oo Window _tielp
windows
start s
Start Without Debugaing CHrl+F5
Processes
Exceptions. Ctri+al+E

cten Tntn .

Figure 1: The Two Options For Starting Your Program

"Start Without Debugging" will start the program normally, and cause the process to ignore anything we'll talk about in this document, so don't use it. As a side note, "Start Without Debugging" will ask you to "Please type a key" before it exits, so you can at least see what it's done before it exits.
Thus, you want to use "Start". However, if you simply "Start" it, it'll start, run to completion (since you haven't told it to stop), and exit. What you'll see is the 'Console' window pop up, then disappear.

You can tell the debugger to stop the process at a given line by clicking in the grey border to the LEFT of the line you want to stop on. (Alternately, put the cursor on the line, and select the "New Breakpoint" item from the "Debug" menu)(Alternately, put the cursor on the line, and press "F9" (please note that all keybindings depend on which keyboard configuration you chose when you installed VS.Net)). When you've set a break point correctly, you should see :
[image: image3.png]Mai

Fle Edt Yew Projct Bud Debug ook Window Hep
| startpage Maincs | LooksGoodTatte.cs | 4 b x | [Soltior
R [8isDebugger Example.clsst =] [s®mantrngl orgs) = L
g 1T using system <
g 2
< 35 namespace Debugger_Example

4

E class Classt

E ¢

K (sTaThread]

E static void Main(string[] args)

B «

10 int [1 nums = nev incll (S, §, 1, 3, 8, -1, 0, 10};

11

12 Printhrray (nurs) ;

o
14

BubbleSort (nuws) ;

Figure 2: What The Screen Looks Like With An Active Breakpoint

Now, when you tell VS.Net to "Start" the program, the program will start, and run until it hits that breakpoint (stopping point). As a side note, it'll hit that point every single time it tries to execute that line of code. You can right-click on the red dot, and select "Disable Breakpoint" so that it's still there, but you won't actually hit it.
HUGE NOTE: When the program starts, it is about to execute the given line, but hasn't done so yet. So if the line assigns a value to variable, when you stop, the assignment will not yet have taken place.
Once you've stopped the process, you'll notice that there are some new windows visible, as well as some new items on the "Debug" menu. If you want the process to resume execution, you select the "Continue" option from the "Debug" menu (in this example, you could also press "F5"). If you're done debugging, and want to go back to editing/compiling/etc, pick "Debug(Stop Debugging" (Shift-F5).
[image: image4.png]Debugger_Example - Microsoft Vi

Bl Edt Vew Project Buld

»um 2 5= (= o3
R stert poge |Maines | Lotesol
5 || [goebusoer_Erampiecosst |
£ T Grimean
[E €
I IR

o 5| osmserd
D) e
"

‘

Name value

watch 1 ;

Debug

»
n

il C# NET [break] - Main.cs.

Toos Window _tielp
windows

Continue s

Stop Debugging Shit+Fs
Detach Al

Restart Culishrtirs
Processes

Exceptions Cleatse
Step I Pt
step Over Fio
step Ot Shit+F11
QuidWatch, CulvtQ
New reskpain. cule

Clear Al Breskpoints Clrkshift+£9

Disable Al Ereakpoints

~=lolx|

apx

8, -1, 0, 10};

sarrrnsrarrERsTaEREAN) ;

Properties

j [Call stack.

7 x|

=1 Jnome

[Langr <

theanay(i error: ider
thearay{i+1] error: ide
‘ thearray error: ider

Debugger_Example.exelDebugger_Example Class1 Main(sh C#

e [l o e . 03 sohne

| 2§ Class V... | BB Runnin... | 5k Threads (e Call Stack [B Breakpoints |] Command Wind... |

Figure 3: What VS.Net Looks Like When The Process Is Stopped
Exercise: Try starting the program with both "Start" and "Start Without Debugging" without any breakpoints. Next, put a breakpoint at line 10 in the provided code and try running the program via both methods.
Running And Stopping More Frequently: Stepping
If you want to move the space of single line, you could either set a temporary breakpoint on the next line, tell it to continue, let the process hit the breakpoint, and then remove your temporary breakpoint, or you could make VS.Net do all that for you using the "Step" feature. "Step Over" will execute the current line of code, including any function calls on that line, and then stop at the next line of executable code.
Assuming you've stopped the process on the 10th line of the provided demonstration project, try doing "Step Over" three times. Notice that on each line, you execute the whole line.

"Step Into" will execute until it enters the first function/method call on that line, where it will stop. "Step Out" will run the process until it returns from the current function/method.
Assuming you've stepped to line 14 or so, trying doing a "Step Into". Notice that you end up in some code for BubbleSort – while interesting, we don't want to be here. Try the "Step Out" command, which will put you back on line 15.

Knowing Where You Are (And How You Got There):
The Call Stack Window

Knowing where the program currently is is great, but it's normally the case that you can get to any given line of code through multiple ways and/or possible to repeatedly reach a statement (if it's inside a loop, for example). The Call Stack (which I normally refer to as "the stack") will show you the chain of methods / functions that lead you to the current line of code. In the example below, you'll see that the current stack frame (also known as the current activation record) is the PrintArray method. We know this both from the fact that the little yellow arrow is on line 24, thus indicating that the next line to be executed is line 24. We also know this because the top line in the Call Stack window says

Debugger_Example.exe!Debugger_Example.Class1.PrintArray(int[] theArray = {Length=8}) Line 24 + 0x1c bytes
C#

Debugger_Example.exe!Debugger_Example.Class1.Main(string[] args = {Length=0}) Line 16
C#

This tells us that in the file Debugger_Example.exe, in the method named PrintArray, we're at line 24.

We can tell that main called this method because the next line is
Debugger_Example.exe!Debugger_Example.Class1.Main(string[] args = {Length=0}) Line 16
C#
[image: image5.png]i

| xeqeeL |

e Edt Vew Projct Buld Debug ook Window Help

» i mol|® oz rec @~
Sort Page [LooesoedTotie.cs | Propertes
[&12Debugger_Example.Class1 | [-@rintarray(n] thesrray)

Printirray(nums)
ComSole. UriteLine (MFF8 s Tsssstsssssstssssnssssssnsssrsnan);

// Uncomment the following line, and try out your debugging skills!
7/ ProgramTaDebug.problem() ;

public static void Printirray(int[] thelrray)

g

watch 1

Nome Voo
therray(i] -1
thedrray(i+ 0
therray {Length=g}

© Debugger_Example.exelDebugger_Example. Class1 Printanay(in] thedrray = {Lengtt

) Line 24 + Oxc bytes
Debugger_Example.exeIDebugger_Example.Class1 Main(strinal] args = {Lengt

} Line 16

Figure 4: The Call Stack Window

Notice that if you double-click on a line in the Call Stack window, the main editor window will jump to that line in the program (thus showing you that code).

Examining Data: The Watch Window

Once you've got the debugger stopped where you want it, you'll need to be able to examine the state of the program – the current value of variables, the contents of arrays, etc. For that, we'll use the "Watch" window. You can type the name of any variable (that's in scope) into the watch window, and VS.Net will do it's best to display the value that the variable contains. Remember that things like the "this" reference is in-scope inside a class's (nonstatic) methods, as well as global variables. In the example below, I've chosen to display both the variable "i"
 [image: image6.png]~=lolx|

Edt Vew Project Guid Debug Took Window Help

(= = vex |-

St Page Ml | LoosgoodTotte.c |

2 —
& ||[82sbugger_Example.Class1 | [-@rintarray(n] thesrray)
g 21
o 228 public stavic void Primthrray(inc[] thekrray)
23 «

o for(int i = 0; i< thedrray.Lengeh; i++)
25 ¢ o

2 Console. UriteLine (thearray(al) s
27)
25 =
| _>l_I
Twach & x| Wisak 7 x|
T [vaue [Tpe =] | Jname JLong -
i o int. Debugger_Example.exe!Debugger_Example.Class1.PrintArray(in C#

_’/ Debugger_Example.xe!Debugger_Exanple, Class1 Mai(stringl] C#

Bl || & Treats)l 505 |) reakports | Cormand Vindon |

E puros 1l Locdls g Watc.. | G 5o |93 Clee

Figure 5: Checkin' Things Out With The "Watch" Window
Once you've played around with the "Watch" window, you should try playing around with the "Autos" window, and "Locals" window.
Final Notes: Strategies For Use

The basic strategy in using a debugger is to understand what the program should do, then figure out what the program is actually doing. At some point, what it's actually doing will diverge from what it should do. Whatever's causing that divergence is the bug, which you then need to fix. Of course, you can't fix it until you understand what's causing it, but at least it'll save you time in figuring out what's going on.
There are books on this sort of thing out there. It wouldn't be a bad idea to check one out of the library & read through it, to give you ideas for how to attack problems like these.

For example, this one got a review on Slashdot:

http://books.slashdot.org/books/04/02/21/228241.shtml
Practice

Uncomment line 19 in the provided project, figure out what's wrong with it, and fix it. Make sure that you truly understand what's going on, so that you can concisely describe the cause of the error (not just how to change it in order to get it to work)
