BIT 142

Page 2 / 3

Lesson 2
I/O Expectations:

Know Write vs. WriteLine

Understand both + and {0} syntax

Point out the {0}, {1}, etc, etc
Should know what the following code does:

	static void Main()

{

int i;

int total = 0;

for (i = 0; i < 5; i++)

{

Console.Write("i is: " + i);

total += i;

}

Console.WriteLine("After {0} iterations, the total is {1}", i, total);

Console.WriteLine("After {0} iterations, the total is {1}", i, total);

}

Enums:
Short for 'enumeration' – meaning a list of all possible values.

Useful for when you want to assign TEXTUAL NAMES TO INTEGRAL VALUES
Useful when you want a limited range of possible values
readonly int is nice, but you're using an int type, so you can say NUMERIC is 0, but you can't say that only 0, 1, 2 are valid.

W/ an enum, only the values you specify can be valid.
There are ways to beat the compiler into submission, but you need to make the conscious decision to ignore (override) the compiler errors
In C#, this actually defines a brand-new type.

Thereafter, you can use it just like a class

Important Points:

1. Enum begins with enum <EnumName> {
2. ends with }
3. For each value, you can use any name you want - normal naming rules apply

4. Separate each item with a comma

5. You can put a comma after the last item, or not, if you want.

6. The first item has the integral value 0, by default

7. Unless otherwise specified, each item has the integral value of 1 + the value of the item before it.

8. You can forcibly assign specific values to individual item, if you want.

OOP review:
stuff here

Using The Debugger:

stuff here

Insert by value, in order:

stuff here

Enums

Short for 'enumeration' – meaning a list of all possible values.
TWO MOST IMPORTANT POINTS:

1. In C#, you tell the compiler how to map (source-code) textual names to numeric values, using an enum declaration
2. Useful when you want the compiler to (help) enforce a limited range of possible values
In C#, this actually defines a brand-new type.

Thereafter, you can use it just like a class

Important Points:

9. Enum begins with enum <EnumName> {
10. ends with } (no semi-colon, unlike C++)

11. unless you say otherwise, the numbers will be represented as ints.

a. You can put : IntType after the name you chose, if you want to specify another (integer) type

b. You can use u-prefixed types, if you'd like, but not char
c. You can use most comparison operators, as well as + and – type operators, on enums

d. You can use bitwise operators on enums

12. For each name/value, you can use any name you want - normal naming rules apply

13. Separate each item with a comma

14. You can put a comma after the last item, or not, if you want.

15. The first item has the integral value 0, by default

16. Unless otherwise specified, each item has the integral value of
(the value of the item before it) + 1
17. You can forcibly assign specific values to individual item, if you want.
18. You can also reference other members of the enum, as long as there's no circularity.

19. Normally, you assign values to enum instances by using a name of a member of the enum

a. You CAN type-cast any value of the underlying type into being an enum, though, so it's possible that an instance variable has a value that isn't one of the named values.

20. All enums are considered to be a subclass/subtype of System.Enum, so you can use any of the methods defined there

a. There are also some useful static methods, such as Enum.Parse, to convert a string to it's corresponding enum value.

Diffs from C++:

1. If you print it out (i.e., you call ToString on it), it'll print out the textual name, not the numeric equivalent.

2. If you want to print out the numeric equivalent, you'll need to cast it to being an int (or whatever)
ICE: Create & use an enum
BIT 142

Page 2 / 3

