:
Documentation: Written Summary
· You don't include a short summary of to reliably beat the game.
(-10)
You did a good job of explaining how you wrote your program, but didn't talk about the strategy for winning the game all the time.
· Nicely done – the only thing I'd add is a quick sentence or two explaining which numbers from which you are choosing (the example shows this, by showing that if you start by guessing 8, and the guess is too low, then the remaining numbers to guess from are 9-15).
 (-2)

· Looks good.

The Source Code
· Looks good, overall.

· You're using instance variables to pass data from one command (method) to another. You should use parameters & return values to pass data around, and use instance variables for information that you need to store permanently. Change everything except the keyboard & randomNumberGenerator to being local variables (somewhere), and then add parameters/return values as you need to in order to make the program work (and/or move functionality around so you don't need to pass as much data around).
(-4)

· Please format the code so that it's consistent with the code that the instructor writes on the board in class. In a nutshell: each time you type {, move down a line, and inwards one tab stop. Keep writing new lines at that same tab stop. When you type a }, move it back one tab stop (so it 'lines up' with the matching {.
 (-2)

· You didn't divide the program up into two separate files, Game_Program.java, and GuessingGame.java
 (-10)
· The program doesn't start by printing a welcome message.
 (-5)

· Each game, you need to print out the directions again.
 (-5)

· The directions don't make it clear that the user should only guess numbers.
 (-5)

· The directions don't make it clear that the user should only guess whole numbers.
 (-2)

· The directions don't make it clear that the user should only guess whole numbers from 0-15, INCLUSIVE (i.e., that 0 & 15 are valid guesses)
 (-2)

· If the user types in text as their first guess, the game will immediately end
(-3)

· The user doesn't get 5 guesses EXACTLY.
 (-5)
· You don’t track the user’s prior guesses using an array.
 (-20)

· You don't tell the user what they've already guessed.
 (-10)
· Use a loop to print out the previous guesses
(-3)
· You don't figure out if the new guess duplicates a previous guess.
 (-5)

· You should only compare the user’s current guess against the previous guesses, instead of against all 5 elements of the array.
 (-4)

· You don't need to fill the previous guesses array with zero – instead find a way to only utilize that part of the array that actually contains guesses. Zeroing everything out is inefficient.
 (-2)

· If the user guesses "0" on their first guess, the program claims they've already guessed it.
(-2)

· When the user's new guess duplicates a previous guess, you still decrease the # of guesses left. (-2)
· When the user guesses the number correctly, you don't print a message.
 (-2)
· When the user guesses the number correctly, you don't end the game.
 (-2)

· You don't tell the user if their incorrect guess was higher (or lower) than the secret number.
(-10)

· You don't tell the user how many guesses are left.
 (-2)

· You need to follow the structure given in the starting files, and by doing so, allow the user to play the game multiple times, if they choose.
 (-5)

· You need to allow the user to play the game multiple times, if they choose.
 (-2) (You can do this by asking them if they’d like to play again, and if so, return true. If they don’t want to play again, return false)

· When the game ends, you don't give the user the choice of playing again.
 (-2)

· When the game ends, and the user opts to play again, PlayGuessing doesn't return true.
 (-2)

· When the game ends, and the user opts to NOT play again, PlayGuessing doesn't return false.
 (-2)

· If the user loses the game, you don't tell him/her what the secret number was.
 (-2)

· How about puttng all the ‘reset’ code into a new method, so that you can call it both from the constructor, and at the end of the PlayGuessingGame method?
 (-1)
· You need to re-set the object, even if the user elects to not play again. What if PlayGame is called a second time, later on?
 (-2)
(Imagine a "menu of games", one of which is this guessing game – maybe the player decides to stop playing goes back to the menu of games, decides that this really is the most fun game, and plays again?)

· Code that you've commented out should be removed before handing the assignment in.
(-2)
· Create a new command to ask the user if they want to play again, rather than duplicating that code. (-2)

Grade:

(Note: Anything that has been “grayed out” isn’t something that you’re actually losing points for, but the instructor wanted to leave it in in order to make sure that you don’t forget to thinking about it while doing the revision. If it’s listed here, you should fix it, even if it is grayed out.)

(Note: If you have any errors that are duplicated in different areas, you'll lose the points once, and you'll only see the mistake listed here once. HOWEVER, you need to fix every place the mistake was made, in order to get the points during in revision.)
Your instructor has found that some students will 'panic' when shown an apparently low grade for the first version of a homework assignment, despite the fact that the grade can improve (often significantly) on the revised version. Thus, no grades are shown on the gradesheet for your first version (your revised, final version will display a grade).

In order to calculate your grade, you need to do the following: add up all the numbers in the right-hand margin (example: -2 + -2 + -3 (-7). Add that number to 100 (example: 100 + -7 (93)

