BIT 115
Lecture 1

Page 12 / 13

	NOTE TO STUDENTS:
These notes are for the instructor's use. If you happen to find them to be useful, that's great. If not, then please ignore these. Thanks!

--The Instructor

Focus:

 It's a very good idea to immediately begin stressing that they'll have to do a lot on their own, and make a lot of suggestions – "Try this, try that". Also point out that they should be trying to write incorrect code, so they can see (and remember!!) the errors that they get in a controlled environment.

 PreDo: Get Demo #1, Demo #2 ready, test the link to the coursefolders in the HW document

Lecture 1:

<Bring up intro slide & leave it there while people file in>

Attendance, based on Enrollment records

If your name isn’t called, talk to me after class.

Intro:

My name is Mike Panitz

This is BIT 115: Introduction To Programming

If you’re in the wrong class, now is the time to leave.

First up: course web page

Log in (you've got your account activated, right?)

Fire up IE/Firefox
Load up the course web page

Book mark it, so you don't have to re-type it every class

Web page explanation:

You'll use this a lot, so take a couple minutes to get used to it

Announcements middle

Per-lecture material on the left

Notes are there primarily for my use

If they help you, great, if not, too bad.

Assignment/homework info at the top of the left column

Course-long material in right column

"DRAFT" status

If something is labeled "DRAFT", then I haven't yet finished this quarter's version of it.

It'll probably be similar to what's there, but no guarantees

When I've revised it, I'll remove the "DRAFT" notice.

Go over the announcements.

Why Take This Course?

Should be comfortable & able to use Windows

Find/manipulate files, run programs, manage different copies of documents

Objective: Learn Basic Programming!

How to program in Java

Learn by doing

This class isn’t a traditional, “listen to lecture, do reading, do homework, lather, rinse, repeat” type course – the only way to make sure you’ve got it right is to actually do it.

Understanding is the key!!!!

Ex. of 1st grade HW assignments on add/subtract

you don’t have them, but you know how to do it.

Avoid the “typing monkey” approach – the more you understand, the easier it’ll be later.

If you try something & it works, figure out why.

How To Study:

Programming is closer to math, or a foreign language, than most academic topics

Very applied – you have to actually do programming

Being "book smart" isn't enough

Thus, you need to constantly try stuff out, and "play" with it.

You need to make up small programs for yourself, just to see if you can.

First, skim the topic, and get an idea of what the goal is, and the general ideas

What we cover in class is what I think is important

You should focus your time on that

Read through an example in detail

You should have a clear understanding of what's going on, and a clear list of stuff that you need to figure out.

Try it out, try changing it, make sure you remember it.

Type it into the computer, watch it run, observe the effects

Try modifying the program, just to see if you can.

These changes don't have to be earth-shaking: the point is that you can, not that the changes actually improve your life.

Do this again from memory, solve a slightly different problem from memory, make sure that the next day, you can still do this all from memory

Today:

You just got a summary of the course, so we’ll start covering stuff for today

Reading: 1.4 thru 1.7 (for today’s stuff), 1.5 – 1.7 (for next class)

Do this before the next class, or you’ll be behind

A1 is available on the website – it's due next Monday

You'll have everything you need after the end of Lecture 2 (L2)

Syllabus:

Point out where the syllabus lives on the website

Since students can get the syllabus from the website, I'm not killing trees just to hand them a copy.

If info isn’t on here, you should ask before it’s an issue.

“I didn’t know” isn’t a valid excuse.

Neither is “the computer ate my homework”

YOU are responsible for knowing the syllabus!

No quiz questions, but should know what’s going on.

Some details may change as the quarter goes on, but

EXAMS WILL BE GIVEN ON THE SPECIFIED DATE!!!

Syllabus :

Required Book

Probably a good idea to bring the book to class, if you can.

NOTE: In order to sell the books back to the campus store at the end of the quarter, you need to keep the CD with the book!!. I’m pretty sure that if a textbook comes with a CD, the campus store won’t buy it back unless the CD is present.

Class meeting time:

You're required to show up for whatever section you're registered in

Feel free to show up for other ones, if you want

You can change your home "home" section easily for a week or so

Office hours

CONTACT ME AHEAD OF SHOWING UP, JUST TO MAKE SURE I'M THERE – unexpected events happen, and you don't want to drive in, only to find a note explaining that I'll be back in 20 minutes.

If these hours don’t work for you, email me questions,

or arrange another time

If you're in the building, feel free to try knocking on my office door.

Contact Info –
Email is the best way to contact me.

Drop printed material in my mailbox in Room 154

Don’t check email from home:

Don’t plan on getting a response Sa, Su

Another good reason to start work before the night it’s due (
No Cheating!!

There will be in-class group-work (pairs & larger)

I encourage you to discuss problems

I encourage you to go to your peers for help

Cheating is copying something verbatim

Eliminates need to understand anything yourself

Thus you’ll only hurt yourself.

If you cheat, you’ll fail

If you cheat but don’t get caught, you’ll get flogged on the exams

Then you’ll fail (or at least do really badly) (

Explain 30% of grade.

Behavior Rules

The main thing is that you don't disturb the people near you.

If you don’t want to pay attention, that's fine

Don’t force your decision on the people near you

ICEs – working time

If you've already been programming for a while,

and you're just here to learn Java

Talk to me & we'll find something more challenging for you

Pairwise Reading: Grading

10 minutes: Pairwise reading

Group up into pairs (triples if odd number)

Introduce yourselves –

Name

Why you’re taking this class

What you’re hoping to do with this course

Get a copy of the syllabus off the website

Read the section titled "Assessment"

Summarize the important points

This is how you'll be graded; you decide what's important

5 minutes: Exchange info w/ other pair

Listen to what they've got, then present your summary

Grading Details:

Attendance:

Will be taken, won't actually count towards your grades

Quizes:

Only apply to the previous lecture's content.

Short, will be 1-2 questions, answer fits on a 3x5 card.

I would strongly recommend keeping these, and labeling each with: Your Name, the Lecture Number, the date, and the question.

Next class's quiz will be 4 points – more details later.

In Class Exercises:

If you're here, I assume you're doing the ICEs

I always have the right to judge whether you're actually doing them or not

If you're absent, present them to me, and you'll get the points from them.

Personal Data Sheet

For use by this class (i.e., me) to know more about you.

Don’t fill in anything you don’t want to.

Don’t spend a lot of time on this

This was mailed to people, via USPS, prior to the start of class

If you've got this filled out, hand this in now.

SEND ME EMAIL SO I CAN CONTACT YOU

In the event that the class is cancelled, etc, I'll try to email you sufficiently in advance, although I don't guarantee it.

Technical Announcements:

If you don’t have an account, go to the Open Learning Center

Save stuff in “My Documents” (network drive), NOT your desktop

Desktop gets copied to a server when you log out,

copied to the next computer you log into

Once saved a 100MB file on my desktop – took me 15 minutes to log in

Lastly: Any questions?

<End of Ppt. presentation>

<Start demo on overhead>

What is Programming

Programming is the act of creating a textual description of what the program should do

The text is divided up into commands, or instructions

Generally, one command per line

Each command has an effect which is independent of others.

I.e., the same command does the same thing, no matter where it is in the program

Programming is deciding which commands to use, and in what order to put them.

We're going to spend the entire rest of this quarter studying this, so worry if it's not crystal clear.

Similarities to & differences from HTML

Similarities:

Both Java & HTML use text to describe what they want to have happen

Both need to be interpreted/converted to a final form

Looking at Java / HTML isn't particularly helpful.

Differences:

HTML is purely descriptive

This text should be bold-faced

Java describes a sequence of steps that the computer should do in order to accomplish something.

Label1.Font.Bold(); // This tells the label to be bold

Label1.SetCaption("This text should be bold-faced");

// The label should now look like it would in HTML

Walk-Through for In-Class Exercise (ICE)

As you go through this, Interact w/ the people you met in the pairwise reading:

Double-check each other

You should both understand what’s going on

There's 20+ of you, and only one prof., so instead of waiting for my help, ask other students.

This is (roughly) the same as Ch 1, in the book.

Simulated Robotics: Overview

For most of this quarter, we're going to be writing programs that moves a simulated robot(s).

<Run Demo #1>

You'll give commands to one (or more) simulated robots

Move them around a simulated city, tell them to do things, etc.

Point out city 'blocks', avenues (north-south lanes), and streets (east-west lanes)

Point out the "Thing"

We don't care exactly what type of Thing it is

(If you want, imagine that it's a lamp)

Notice: Robots aren't allowed to go through buildings

There may also be walls that block lanes. If a robot crashes into a wall, it will be destroyed

<Run Demo #2>

That, conceptually, is the environment that we'll be programming in

Moving a robot around a city

As I said earlier, we'll do this by describing, using text,

what the city looks like, and what the robot should do

We'll need a program that can edit text.

Further, we want a program that can make our lives easier – run the program, etc.

We'll use an Integrated Development Environment.

We'll use something called jGRASP
This can edit text, and we can easily tell it to run the program

There's a tutorial on-line that we'll be going through that'll explain how to do the basics.

Tutorial:

Download from the website Starting_Template.java

You should be asked to save it, if so, save it under "My Documents" somewhere

If not, back up to the course's main page,

right-click the link, select "Save As", and put it under "My Documents"

MAKE SURE TO KEEP THE NAME THE SAME!!!!!!!

jGRASP
(Note that these directions are for WindowsXP – Win2K, etc, will be slightly different)

To start the jGRASP program:

Click on the Start menu,

then on "All Programs",

then on " jGRASP" (the menu folder),

then on " jGRASP"

<Go over windows>

<Go over toolbars>

From within jGRASP, select the "File" menu

Then "Open"

Go find the file & open it.

<Go over colors – explain comments>

Right now, use the template as a starting point

You'll eventually be expected to generate the whole thing from scratch

!!! Extremely Important For Using This At Home!!!

Download the becker.jar file(s) from the website, and store them ("My Documents")

In jGRASP, click on the "Settings" menu,

then on "PATH / CLASSPATH"

Click the "Workspace" button, and go find becker.jar

Click Ok till you're back in the main window of jGRASP
If you don't do this, NOTHING will work.

You only have to do it once per account (once here, once at home)

Once per computer

Later, on your own time, try running a program without doing this, first.

Go over how to check that this has been done.

<Compile, run>

<Go over list of commands for Demo #1>

<Go over the result of crashing into a wall>

ICE: D/L Starting_Template, add the wall, watch the robot crash (#1), then fix it so that the robot goes AROUND the wall (#2)

ICE_01_03.java: This is a more advanced setup – but it’s still move-pick up-move-drop

ICE_01_04.java: More practice

<Set students loose on trying to find a way around the wall
Debugging – fixing mistakes – THIS IS FROM LECTURE 2
EVERYONE makes mistakes

Need to know how to find & fix them

Many different techniques & programs to help

You also want to start developing a feel for when you’ve simply made a typo, and when you need to re-read the chapter, or ask a classmate, or look on the Internet, go to the teacher for help. Don’t sit in front of the computer for 3 hours & type semi-randomly!!!

Also, you’ll make errors that aren’t strictly programming

Lost track of the current version of a file, or lost the file completely

You’ll need to understand/find, and fix these as well

3 different general categories:

Compile-time (Syntax) errors:

Anything that goes wrong when you compile the file

Point out that the Output Panel is often kinda small, can be resized, and you should get used to figuring out which line the error pertains to.

Examples:

 Java is case sensitive

Java is different from java, is different from JaVa

This means you must type in names, etc, EXACTLY the same

 File name must be the same as the class's name
 You need the import becker.robots.*; at the top of each robot file

 Compile THIS PARTICULAR FILE –
 There are about 3 different compile options, 6 different run / debug

options. You need to know which one to use.

 Forgetting to compile before running

You need to compile the file EVERY SINGLE TIME you change it

You should also wait till the compilation finishes before trying to

run it

Strategy For Fixing These:

Follow the debugging strategy (listed in your text) to find and correct the syntax errors in the errors.java program.

1. compile the program to get a list of errors;

2. fix the most obvious errors, beginning with the first error reported,

3. compile the program again to get a revised list of the remaining errors.

Run-Time:

Anything that causes the program to crash while it's running

The Java language does a lot to protect you from this type of error, so you shouldn't see many of these.

Intent (Logical) Errors:

The program compiles & runs without crashing, but it doesn't do what you want it to.

Example:

 robot takes an extra leftTurn, and runs off the screen

 robot doesn't pick up a Thing when it's supposed to.

 robot collides with a wall (the book calls this a run-time error)

However, as you continue doing this, you'll make fewer "typo" type mistakes, and end up with more intent errors in your code.

You need a strategy to figure out where the intent problems are, and how to fix them.

<Make sure that they know where the ICE is, since a lot of them tend to miss it. Also, point out the debugging table, since it'll help them record the errors>

<<< At the end of this part of class, I'm going to ask each pair to put on the board some error that they found, and how they fixed it. >>>

ICE: L2's ICE part 1.

How To Install The Software On Home Machines

There's a document on the website (under "e-Handouts") that'll tell you how to get all the software

It's all free, except for SitePad

SitePad is available as a demo version on-line.

You can buy a license on-line.

You can also buy a licensed copy in the bookstore

I'd highly recommend getting a copy, since this is what we'll use in class

If you want, you can get a different IDE, but you're on your own in terms of problems

All the software has been installed in the labs, breakout computers, and OLC

(Except for the Karel-specific stuff)

Regardless of whether you use your own computer, or the schools'

You're responsible for getting all the work done, on time.

<Once most people have done this, get a pair up to explain their solution>

<Go on to parts 3 & 4, if you can>

Unless I say specifically otherwise, it doesn't matter exactly which route you chose to get there. HOWEVER, I'll ding you points for anything obviously inefficient (Karel turns around twice, then keeps going in the same direction it started) on homeworks.

A1

Homework assignment 1 ("A1") is due 2 lectures from now (during L3)

We'll go over how to submit the homework at that time, so don't stress about it.

It's available on the course website.

Next Class

Do the reading

4 point quiz:

Walk into class, and write a Java program to guide the Robot around a couple walls.

You'll be given a starting_template class,

You'll just have to fill in the list of commands

You'll take the quiz individually

Do HW part 1, and you should be fine for the quiz

BIT 115
© 2002, Michael Panitz ®2002, Michael Panitz

Page 12 / 13

