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Sullivan & Sullivan, Fourth Edition

Establishing Double & Half Angle Formulas (Review)
	1)  Establish the identity for 
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, using the Presentation Format below.  Use the sum formula (
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Establish that 
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Starting Point:


[image: image4.wmf](

)

q

2

sin


· 1 + 1 = 2







= 
[image: image5.wmf](

)

q

q

+

sin


· Use the sum formula
= 

= 

= 

= 

= 

= 

= 




	2)  Establish the identity for 
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, using the Presentation Format below.  .  Use the sum formula (
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	Establish that 
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	3)  Show that the following is true: 
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We're going to do this in a slightly different manner than we normally do for establishing identities – instead of taking one side of 
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 (which we haven't yet shown to be true), we're instead going to take a different, already-known-to-be-true identity, and change that until it looks like 
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.  Since we known that 
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 is true, we can treat this like an equation, and write the whole thing on each line.  The 'trick' to this proof is to, change θ to α by saying that  
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, and then isolating sine on one side.

	Establish that 
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	Starting Point:  
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	4)  Show that the following is true: 
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We're going to do this in a slightly different manner than we normally do for establishing identities – instead of taking one side of 
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 (which we haven't yet shown to be true), we're instead going to take a different, already-known-to-be-true identity, and change that until it looks like 
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.  Since we known that 
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 is true, we can treat this like an equation, and write the whole thing on each line.  The 'trick' to this proof is to use  a Pythagorean identity to change the cos2 into a sin2., change θ to α by saying that  
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	Establish that 
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	Starting Point:  
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