Stack of Simple Types vs. Stack of Reference Types

So far, we've been dealing with a Stack of integers, which makes life easy, because once we've allocated our array of ints, we've got all the space we need:

[image: image1.emf]Stack object

2 int iTop

<memory

reference>

int []items

5 int size

<array>

101

Slot 0

-20

Slot 1

3

Slot 2

0

Slot 3

0

Slot 4

However, if we want our Stack to hold reference types, we'll end up with a picture that looks slightly different. Let's assume that we've create a class called Car, and that each car has only two data fields – the number of wheels that the car has, and the weight of the vehicle. A stack of 3 Car object might look like this:

[image: image2.emf]Stack object

2 int iTop

<memory

reference>

Car []items

5 int size

<array>

<mem. ref>

Slot 0

<mem. ref>

Slot 1

<mem. ref>

Slot 2

null

Slot 3

null

Slot 4

Car object

4 int nWheels

500

double

weight

Car object

6 int nWheels

700

double

weight

Car object

6 int nWheels

600

double

weight

The key point to notice is that slots that haven't been used yet contain the value null (C# will automatically initialize all slots the Car array (or any other array of references) to have this special value), and therefore will not refer to a valid memory location, until the Push method is called, whereupon the Stack.Add method will take the reference to the Car object, and push that object onto the stack.
For this exercise, copy-and-paste your StackOfInts , and rename it, so that you can quickly begin work on your new StackOfCircles. Either create, or else find, a class for your Stack to store (your should aim to spend less than 3 minutes, from start to finish, on the class that you'll be storing – if you need to create one, create a Car class with the two attributes listed above, and give it a Print method). (You can implement a Stack of any reference type you want – StackOfCars, StackOfCircles, StackOfMarsLanders, StackOfStacks, etc)
Since you're going to develop this new, slightly different class using the Test-Driven Development methodology, you should copy all of the tests for the StackOfInts, as well. If you're going to keep the StackOfCircles in the same project/program as the StackOfInts, then I'd recommend factoring out both sets of tests into, for example, two separate, static methods, and simply having main call each one in turn, like so:

public class Class1

{

public static void Main()
{
TestStackOfInts();

TestStackOfCars();
}
public static TestStackOfInts()
{

… // tests here

}
public static TestStackOfCircles()
{

… // tests here

}

}
Next, implement the StackOfCircles class using the Test-Driven Development that we saw earlier. I'd recommend commenting out all of the test cases that you copied from StackOfInts, except for the very first one. Change that first test case around so that it'll work for a StackOfCircles (e.g., you might need to create a Circle object, rather than an int, in order to call the StackOfCircles.Push method). Get that test case to work. The iterate through the remaining test cases, uncommenting each one, and implementing it.
_1205323038.vsd
Stack object

2

int iTop

<memory reference>

int []items

<array>

101

Slot 0

-20

Slot 1

5

int size

3

Slot 2

0

Slot 3

0

Slot 4

_1205323399.vsd
Stack object

2

int iTop

<memory reference>

Car []items

<array>

<mem. ref>

Slot 0

<mem. ref>

Slot 1

5

int size

<mem. ref>

Slot 2

null

Slot 3

null

Slot 4

4

Car object

int nWheels

500

double weight

Car object

6

int nWheels

700

double weight

Car object

6

int nWheels

600

double weight

