Page 5 of 7

C# & XNA: Functions (/ Subroutines / Methods / etc)
Part LISTNUM NumberDefault \l 1 \s 0 Try out the sample, finished project
Download the .Zip for today, and try out the finished project.

Part LISTNUM NumberDefault \l 1 Calculating the space between bullets

We’ll start by adding a function that will calculate the distance from the midpoint of one bullet sprite to the midpoint of the next. To do that, you’ll need to add the following code to the ‘controller’ region of the project, but OUTSIDE the UpdateWorld method:
public float distanceBetweenBullets()

{

 return BULLET_WIDTH + BULLET_SPACER;

}

This method will return, as the result of it’s computation, the total distance from the center of one bullet, to the center of the next bullet.

Next, to through, and find all the places where you were using BULLET_WIDTH + BULLET_SPACER, and replace that with a call to the above function. For example, in the View code, where we draw the bullets, we have:
// MOVE TEMP OVER, SO WE'LL DRAW THE NEXT BULLET PROPERLY

temp.X = temp.X + BULLET_WIDTH + BULLET_SPACER;

Which we’ll need to replace with:

// MOVE TEMP OVER, SO WE'LL DRAW THE NEXT BULLET PROPERLY

temp.X = temp.X + distanceBetweenBullets();

Don’t forget the () at the end of the function’s name!!!

Part LISTNUM NumberDefault \l 1 Calculating the total distance from left-most bullet

What we’d like to explore next is the approach of using a function/method to calculate a value, based on input to that function. For example, instead of keeping track of all the ‘temp’ location/position vectors for the bullets (when we’re looping through the bullets & print them out, for example), we might like to create a function which will take the location of the left-most bullet, as well as a number identifying which bullet to produce the location of, which will then produce the location (as a Vector2) of that bullet. Bullet #0 is the left-most bullet, #1 is the second from the left, etc. We can do that using the following code:
public Vector2 LocationOfIthBulletFromTheLeft(Vector2 leftMostBullet, int whichBullet)

{

 Vector2 location;

 location.Y = leftMostBullet.Y;

 location.X = leftMostBullet.X + whichBullet * distanceBetweenBullets();

 return location;

}

The above method is given the location of the center of the left-most bullet (as the parameter leftMostBullet), as well as the zero-based index of the bullet that we’re interested in (as the parameter whichBullet), and the method will then produce and return a Vector2, which stores the location of the center of the bullet that we’re interested in.

Next, we can simplify the following:
#region If the bullet hits a wall, adjust the 'active bullets' array

if (drawBullet == true)

{

 temp = m_PositionBullet;

 for (int iWhichBullet = 0; iWhichBullet < howManyBullets; iWhichBullet++)

 {

 for (int iWhichWall = 0; iWhichWall < arr_PositionWalls.Length; iWhichWall++)

 {

 distance = temp - arr_PositionWalls[iWhichWall];

 if (distance.Length() < 40)

 {

 arr_activeBullets[iWhichBullet] = false;

 }

 }

 temp.X = temp.X + distanceBetweenBullets();

 }

}

#endregion

To instead be the following:

#region If the bullet hits a wall, adjust the 'active bullets' array

if (drawBullet == true)

{

 for (int iWhichBullet = 0; iWhichBullet < howManyBullets; iWhichBullet++)

 {

temp = LocationOfIthBulletFromTheLeft(m_PositionBullet, iWhichBullet, howManyBullets);

 for (int iWhichWall = 0; iWhichWall < arr_PositionWalls.Length; iWhichWall++)

 {

 distance = temp - arr_PositionWalls[iWhichWall];

 if (distance.Length() < 40)

 {

 arr_activeBullets[iWhichBullet] = false;

 }

 }

 }

}

#endregion

Note that while both approaches achieve the same result, this second one may be easier to read (therefore easier to maintain), and easier to get correct, since we’re not assuming that our code will carefully maintain temp through multiple iterations of the loop.

For this exercise, you and your partner should find all the places where a loop is used to go through all the bullets, and replace the pattern that we were using (start temp at the left-most, then move over each time through the loop) with the new one (wherein we set temp to directly be the ith location from the left)

Note also that this new function uses the other function to achieve it’s goals. This is good, in that we can reuse chunks of logic that we created earlier.
Part LISTNUM NumberDefault \l 1 Calculating the total distance, as a function of height

The goal for this exercise is to play with bullets that ‘fan out’ as they move further and further up the screen.

First, we’ll change m_PositionBullet to mean the MIDDLE of the row of bullets. While we’re at it, we’ll change the name, so it’s clear what the variable now means. Name it m_PositionBulletMiddle.

Next, change it’s X value to be the middle of the bug, when the bug shoots the bullet:

#region If the player presses 'A', fire a bullet

if (XnaAssignmentBase.GamePad.ButtonAClicked())

{

 if (drawBullet == false)

 {

 drawBullet = true;

 m_PositionBulletMiddle.Y = m_PositionBug.Y + 30f;

 m_PositionBulletMiddle.X = m_PositionBug.X;

 for (int iWhichBullet = 0; iWhichBullet < MAX_NUM_BULLETS; iWhichBullet++)

 arr_activeBullets[iWhichBullet] = true;

 }

}

#endregion

Let’s change the to take an additional parameter, in preparation for doing a height-based spacing of the bullets, but for now, let’s use the same formulas that we’ve been using, just to make sure that we can make this new approach work. So add this method into the Controller section:
public Vector2 LocationOfIthBulletFromTheLeft(Vector2 middlePoint, int whichBullet, int totalNumberOfBullets)

{

 Vector2 location;

 location.Y = middlePoint.Y;

 // temporarily set location.X to be the left-most spot:

 location.X = middlePoint.X - distanceBetweenBullets() * (totalNumberOfBullets-1) / 2f;

 // next, move it back to the correct location:

 location.X = location.X + whichBullet * distanceBetweenBullets();

 return location;

}

The above method is given the location of the center of the row of bullets (as the parameter middlePoint), as well as the zero-based index of the bullet that we’re interested in (as the parameter whichBullet), as well as the total number of bullets (as the parameter totalNumberOfBullets). The method will then produce and return a Vector2, which stores the location of the center of the bullet that we’re interested in. The method will do this by spacing the bullets further apart, as they move towards the top of the screen. The method does this by using the Y value of the middlePoint to figure out how high the bullets are on the screen.
Finally, go through & make sure that you also pass the howManyBullets as the third piece of information to each place where we call the LocationOfIthBulletFromTheLeft function. Make sure that this compiles & runs.
Once you’ve got that working, let’s change things so that the height will be directly proportional to the fraction of the screen’s height that the bullets have traversed so far. We’ll do that using this code:

public Vector2 LocationOfIthBulletFromTheLeft(Vector2 middlePoint, int whichBullet, int totalNumberOfBullets)

{

 Vector2 location;

 location.Y = middlePoint.Y;

float dist = distanceBetweenBullets() * middlePoint.Y / WorldMax.Y;

 // temporarily set location.X to be the left-most spot:

 location.X = middlePoint.X - dist * (totalNumberOfBullets-1) / 2f;

 // next, move it back to the correct location:

 location.X = location.X + whichBullet * dist;

 return location;

}

Part LISTNUM NumberDefault \l 1 Playing with Trigonometry: Wavy Paths
Now that we’ve got that function set up, we can play around with it. Make a copy of the version you’ve currently got, and comment out that copy. Next, try the following version, which makes use of some fun trigonometry to make the bullets follow a more wavy path:
public Vector2 LocationOfIthBulletFromTheLeft(Vector2 middlePoint, int whichBullet, int totalNumberOfBullets)

{

 Vector2 location;

 location.Y = middlePoint.Y;

 float dist = distanceBetweenBullets(); // *middlePoint.Y / WorldMax.Y;

 // temporarily set location.X to be the left-most spot:

 location.X = middlePoint.X - dist * (totalNumberOfBullets - 1) / 2f *(float)Math.Cos(middlePoint.Y / 30);

 // next, move it back to the correct location:

 location.X = location.X + whichBullet * dist;

 return location;

}

This method behaves much like the previous version did, except that it makes the bullets sweep back and forth, using the cosine function.

Feel free to change the formula for dist back to what we had in the last exercise, in order to get both the wavy effect, and the spreading out effect.

Part LISTNUM NumberDefault \l 1 Simplifying Code: isOverlapping method

Let’s examine how we can simplify our code by creating a method that will determine if two circles are overlapping. We’ll name it isOverlapping, and we’ll pass to it the center points of the two circles, as well as the distance beneath which the two circles are considered to overlap. Here is the code that you’ll need:
public bool isOverlapping(Vector2 circle_1_Center, Vector2 circle_2_center, float overlapDist)

{

 Vector2 temp = circle_1_Center - circle_2_center;

 if (temp.Length() < overlapDist)

 return true;

 else

 return false;

}

The above method is given the location of the center of a circle (as the parameter circle_1_Center), as well as the location of the center of another circle (as the parameter circle_2_center), as well as a distance (as the parameter overlapDist). The method will then return true if the circles overlap (i.e., if their center points are less than overlapDist distance apart), or else it will return false if they don’t overlap (i.e., if their center points are more than overlapDist distance apart)
Once you’ve added that to the Controller region of your code, you should then go through & look for opportunities to use it. For example, we can change this:

#region power-up overlaps with player?

distance = m_PositionBug - m_PositionPowerUp;

if (drawPowerUp == true)

{

 if (distance.Length() < OVERLAP_DISTANCE)

 {

 //stop drawing power-up

 drawPowerUp = false;

 // player now shoots an extra bullet (up to 10)

 if (howManyBullets < MAX_NUM_BULLETS)

 howManyBullets++;

 }

}

#endregion

To this:

#region power-up overlaps with player?

if (drawPowerUp == true)

{

 if (isOverlapping(m_PositionBug, m_PositionPowerUp, OVERLAP_DISTANCE))

 {

 //stop drawing power-up

 drawPowerUp = false;

 // player now shoots an extra bullet (up to 10)

 if (howManyBullets < MAX_NUM_BULLETS)

 howManyBullets++;

 }

}

#endregion

For this exercise, switch your program to using this style of collision detection

Page 5 of 7

