Page 1 of 8

GameMaker: Intro To C# & XNA (via XnaAssignmentBase)
Part LISTNUM NumberDefault \l 1 \s 0 Preview of the Game We'll Be Making

Download the .ZIP containing the ‘preview’ for this lecture’s game. Try playing it a little bit, in order to get a feel for what you’ll be doing in today’s class.

Note that today’s .ZIP actually contains a collection of ‘starter projects’ that you will use in class. You should open the one with the highest number (probably ‘008_ControlTheDroppingEgg’, by double-clicking on the Solution file (the one that ends in .SLN). You can run the game by clicking on the Debug (Start Without Debugging menu option.

Part LISTNUM NumberDefault \l 1 MVC: Identifying the Model, Control logic, and View logic
Open up the solution for 002_AnEgg, and run the ‘game’. Next, examine code closely, as described here:

You should be able to clearly identify each of the following portions of the program and explain their purpose. You’re not expected to understand the details of the C# code.

(If do you have prior experience in programming, you’re encouraged to look at the code in detail, but it’s not required). You should fill in the following table with a partner:
	MVC Concept
	Found in the C# code in which region(s)?
	Purpose of the region?

	Model
	
	

	View
	
	

	Controller
	
	

Since you don’t (yet) know C#, you should focus on the different #regions of the code – each on begins with “#region Program state”, and ends with the next “#endregion”. Don’t worry about exactly what’s happening in each one, but instead get a feel for the overall purpose of each region.
Part LISTNUM NumberDefault \l 1 Examining the Model & View in more detail
For this exercise, you will continue to use the 002_AnEgg project.

You should find and examine the DrawWorld method. Once you’re done here, you should be able to answer the following questions:

· Why are we focusing on just the Model and View for this exercise? Why don’t we focus on the controller at all?

VIEW:

· One what line does the DrawWorld method start? Which letter/symbol-thingee tells you where it’s starting?
(Ask your professor to show you how to display line numbers in your IDE, if the professor hasn’t done so already)

· One what line does the DrawWorld method end? Which letter/symbol-thingee tells you where it’s end?
· Can you think of any reasons why all the code for DrawWorld is indented one tab stop?
(When you’re working on this one, try moving all the text back out, so that everything (the starting point of the method, the ending point of the method, and everything in between) are all at the same level of indentation)

· Notice that there’s are two lines that starts with “DrawRectangle”. One of them is in green, and starts with // -- ignore it for now. For the other line, try changing the numbers, and seeing what happens. When you change the “40” to “400” (and you then compile & run the game) what happens? What about when you change “50” to something like “500”. What about when you change “0.0f” to “90.0f”?
(For now, don’t worry about (or change!) the m_position, colors, or the text that reads “egg”)
· See if you can change the program so that your name shows up at the top of the screen.
NOTE: Remember that the text has to start with double-quotes (“ – this is NOT the same thing as two single-quotes right next to each other!!!), has to end with double-quotes, and it’s safest if you don’t put any double quotes inside the text area)
· Try changing the code that reads "egg" to instead be just the starting and ending quotes – "". What does the rectangle look like?
· Try changing the code that reads "egg" to instead be a different image name. Maybe something like "ImageThatDoesNotExist". What does the rectangle look like?

MODEL:

· Notice that the way we create a variable in C# is to list out the type of the variable (is this a number? A location? An image?) and then give that variable a name. Find the line in the Program State region that creates the m_Position vector.
· Make sure that you can explain what a vector is. If you’ve seen this word in math or physics, then use that definition. If not, then the first sentence of the definition at http://mason.gmu.edu/~montecin/netterms.htm is actually pretty good:
“Vector - A line
in computer graphics
designated by its end points

(x-y or x-y-z coordinates).”
· Where in the code is the X component of the m_Position vector given a value? What is that value?
· Where in the code is the Y component of the m_Position vector given a value? What is that value?

· The m_Position represents the CENTER of the rectangle that is drawn. If you set the width of the rectangle (of the egg) to be 40, and the height to be 50, what would you have to set the position to, in order to have the egg be drawn in the lower-left corner?
· The last thing to take note of is that there are actually two separate EchoToBottomStatus commands, on two separate lines, one below the other. Which message do you actually see at the bottom of the screen when the game is running?
This is an example of a sequence – first one thing happens, then the next. It might seem kind of obvious, but it’s worth noting. Plus, it’s good to remember that commands are executed from top to bottom, and left to right (just like how English is read)
Part LISTNUM NumberDefault \l 1 Injecting, and then fixing, some errors into your code
For this exercise, you will continue to use the 002_AnEgg project.

As you create games (or any other programs, for that matter), you will accidentally do the wrong thing, and as a result, your program (or game) will have errors in it. While you should want to avoid doing this, it will be inevitable. Therefore, you will need to develop some skill at fixing errors. You will start to do that here, in this exercise.
With a partner, you should try making the following errors, and record both the error message that the compiler gives you, as well as your own interpretation, in the following table.
(For each error, you should make the error, then fill in the table, THEN FIX THE ERROR before going on to the next error)

	Error
	Compiler Message
	Your interpretation of the compiler’s message

	In DrawWorld, remove the starting and ending quotes from egg
	
	

	In DrawWorld, on the line that has DrawRectangle, remove the parentheses – the (and /or)
	
	

	In DrawWorld, on the line that has DrawRectangle, try removing one of the comas
	
	

	In DrawWorld, on the line that has DrawRectangle, try changing the capitalization of DrawRectangle (maybe to drawrectangle, or anything else you wat)
	
	

	In DrawWorld, on the line that has the second EchoToBottomStatus, leave out one of the +’s
	
	

	In the ‘Program State’ region, on the line that creates & sets the value of WORLD_MIN_X, instead of writing out 0.0f, just write out 0.0 (without the f)
	
	

	In the InitializeWorld method, instead of assigning 240.0f to m_Position.x, instead use the value 240.0
	
	

	Try at least three more things on your own:

	Error #1:
	
	

	Error #2:
	
	

	Error #3:
	
	

Again, the objective here is to help you realize that you need to spend time and energy developing your skills at finding and fixing errors, particularly in C#.
Part LISTNUM NumberDefault \l 1 Adding a new image
For this exercise, you will continue to use the 002_AnEgg project.

Let’s say that you wanted to add an image to your C# game. This is pretty straightforward, and in some ways, it’s very similar to GameMaker.

In order to draw a new image on the screen, you need to do the following:

1. Find and download a new image
This is the same as for GameMaker – either find an image on the web (make sure that you’re allowed to use it legally!), or make one yourself. Make sure you remember where you’ve saved the file.

2. In Visual Studio, open up the Solution Explorer
If the window is already open, then you can skip this step. Otherwise, use the
View (Solution Explorer, as pictured here:

[image: image1.png]& 002_MyGame_PC - Microsoft Visual C# 2005 E»

File Edit [View | Refactor Project Buld _Deb

1 - | coce [
0 %, &| T Clssiew culew, €
S culew, €
g [Femed 3 ount culew, 0
§| | popertswindow Culew,P

Soution Explorer___Ctr+W, 5

2 teskust a1
S Tosbex cute, ¢

Other Windows »

3. Open up the ‘Textures’ folder in the Solution Explorer

As you can see, the Solution Explorer contains a list of all the files that your C# project uses. You should open up the Content (Resources (Textures folder. What you’re looking at should look similar to:

[image: image2.png]EeE

(2 Soluton 002_yGame_PC (1 project)
" 47 002_MyGame_PC
Properties

i References

Content ()
i References
B [Resaurces
=]

=

v spritfont
& [Tetures
] eoa.eng
Game.ico
5l GameThumbra png
] MyGame.cs
&) Program.cs

4. Add the existing image as a texture
Right-click on the Textures folder, and select Add (Existing Item…, then go find the image file & add it, as pictured here:

[image: image3.png]ed

=

|| Sobton 002 yGame PC (1 project)
& & 002_myGame_pC
54 Propertes
5 References
5 = Content ()

2 References
[Resources.
B [Fonts

=

5 avilsprtsfont

=]

New Item,

New Folder

Existing Item

=

add
Exclude From Project
cu

copy

Delete

Rename

5 openes

Note: XNA doesn’t support all types of images. The ones it does support are: The following types are supported: .bmp, .dds, .dib, .hdr, .jpg, .pfm, .png, .ppm, and .tga. (From http://msdn2.microsoft.com/en-us/library/bb447762.aspx)

Once you’ve told Visual Studio where to find the image, Visual Studio will then COPY that file into the Textures directory.

5. Draw a rectangle using your new image.
You can draw your new image by adding the following code to the DrawWorld method. Note that you will have to change the name of the image to match the filename of the image you just imported – notice that you do NOT include the file extension (i.e, if the file is “BunnyRabbit.png”, you just type in “BunnyRabbit”)

// Draw the insect:
Vector2 locationOfInsect = new Vector2();
locationOfInsect.X = 200; // Picked these out of my head
locationOfInsect.Y = 200; // No particular reason for them.

DrawRectangle(locationOfInsect, 40 /* width */, 50 /* height */, 15.0f /*rotate */, Color.White, Color.Red, "Insect2");
Part LISTNUM NumberDefault \l 1 Animation
Open up the solution for 004_EggDropping, and run the ‘game’. Next, examine code closely, focusing on the Control aspect of the program: In UpdateWorld, you will see that the Y value of the egg is continuously, slowly decreased.
You should then go back to the 002_AnEgg project that you’ve been working on, and change your code so that your new image slowly sinks to the bottom of the screen. Make sure that you can set things up so that the image can slowly rise to the top of the screen, move to the left or right of the screen, or that your image can slowly move diagonally towards the upper-left corner (say) of the screen.

Part LISTNUM NumberDefault \l 1 Letting Player Control the Hero
Open up the solution for 006_ControlTheEgg, and run the ‘game’. You’ll notice that we (finally) have control over the image. If you use an Xbox360 controller, you can move the egg around using the Left Thumbstick. If you’re using a keyboard, you can use the arrow keys.

Next, examine the code closely, focusing on the Control aspect of the program: In UpdateWorld, you will see that the X & Y values of the egg are being changed, by adding the value of the ‘Left Thumbstick’. The XnaAssignmentBase module takes care of figuring out how to get input from the keyboard, if that is required, or how to get input from the controller, if that is required. For an actual thumbstick, this number can range from 0 to 1, depending on how hard the thumbstick is being pushed. For the keyboard, if the ‘up’ key isn’t being pressed, then the Y value is 0. If the ‘up’ key is being pressed, then Y is +0.75. Down is -0.75, etc.
You should then go back to the 002_AnEgg project that you’ve been working on, and change your code so that you can control your new image using the keyboard/gamepad. You should also see if you can figure out how to ‘speed things up’, so that your new image moves faster than the egg moves in the demonstration ‘game’
Part LISTNUM NumberDefault \l 1 Gravity & The Controllable Hero
Open up the solution for 008_ControlTheDroppingEgg, and run the ‘game’. You’ll notice that we (finally) have control over the image. If you use an Xbox360 controller, you can move the egg around using the Left Thumbstick. If you’re using a keyboard, you can use the arrow keys.

Next, examine the code closely, focusing on the Control aspect of the program: In UpdateWorld, you will see that we are both applying gravity to the egg, as well as allowing the player to control the egg. Notice that we also very carefully choose the value of gravity to be “0.5”, so that if the player decides to go up, they actually can..

You should then go back to the 002_AnEgg project that you’ve been working on, and change your code so that you can both control your new image, while simultaneously subjecting it to gravity.

Part LISTNUM NumberDefault \l 1 Exploring Games: Finding Unusual Games Online
	
You must complete this before the start of the next class – instead of taking a quiz, you will get 2 points for finding a game that meets the below criteria, and bringing it to class. Not doing so gets you a zero

If there's time available, and the instructor tells you to do so, you should look around online for online video games, in order to get some ideas for your own games.

You should look for games that are:

A) Nonviolent
No guns, explosions, etc, etc

B) Fairly simple
Remember that you're looking for ideas that you might incorporate into your own games – look for 2D stuff that isn't hideously complicated (

C) Fun

Personally, when looking for games online to get ideas from, I like to look for games that are 'Tetris-like' - addictive & simple

Page 1 of 8

