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Lecture 13
<Quiz>

Searching Arrays

Linear search.

This means that you examine each slot of the array, in order, and see if it contains the value that you're looking for.  

Notice that in the worst case, you'll examine all N elements of the array.

If N is large, this will dominate the time required to execute this function.

If N == 1,000,000 elements, and the number isn't present, then you'll have to hit all 1,000,000 elements, which is way more time than anything else your function will do.

If the number is present, and randomly located, we'll have to go (on average) ½ through the array.

Regardless, the time is proportional to the number of elements in the array.

Thus, it'll take about (N * (exact time per loop) ) to do a linear search.

So we say it'll take about order N time to find stuff.  

Binary Search

Assume you've got an array that's sorted 

(which you can do using a BubbleSort routine)

ASK: How many people have seen BubbleSort?

What if we want to find a value in the array?

How about one that's smaller than the first element?

Linear Search : examine every element in the array

BUT, we (programmers) know it's not going to be there as soon as we've seen the first element

The first element is the smallest

So we can take advantage of something we know to be true (the array is sorted) to make a decision that we ordinarily couldn't.

This happens an awful lot in programming, particularly if you want your program to be fast & efficient.

What if we're given a target that isn't present, but would be between the first & second elements?

Same thing as the first case.

Can we find something that'll take advantage of this & go faster than linear?

binary search pseudocode:


<In the ICE>

<Demo this on the board>

first do it intuitively

Then adhere more closely to the code.

ICE : Write Binary Search 

Notice that every time we make a pass, we reduce the remaining number of elements that we'll have to check by 50%.

This is great!!!!

For an array with 16 values, we'll check at most 4 times.

For 32 values, at most 5 times

for 64, 6 times

For 256 (which is the range of 1 byte), 8 times.

We will, in fact, check at most log2(size_of_the_array)

If size_of_the_array is large, this can be a considerable savings

Thus, we can say that for any given array, it will take at most log2(size_of_the_array) passes through the routine in order to find the element, or else determine that it's not there.

Perf. Analysis

Main Idea: we want to be able to describe and compare different algorithms and data structures (different programs, really) quantitatively.
Quantitative ( numbers.

Numbers ( Math

Thus, we’ll look for mathematical functions that describe how different programs behave, and then compare the different mathematical functions.

This will save us effort

Given a brand new program, we’ll figure out which mathematical function describes it.  

Most common programs have been analyzed, and so we know which math. function describes any of these programs.

Most of the math functions which describe these common programs have already been compared to the math. function that describes your new program, and so you’ll know how your program compares to these others, without having to manually compare your new program to every other program out there, one at a time.

So, we know how we’ll compare these.  What do we want to compare?

Speed/Time: People are impatient, and it would be nice for programs to run faster.  Running time is the amount of time that (part of) a program takes to execute (start to finish).

Space Occupied: Algorithms require space (memory – e.g., the nodes of a linked list) – it would nice to know how much space any given one will require.

It's more common to analyze algorithms (which are descriptions of how to do something) for time.  But you can do both, and you'll see both as you progress.

Also, we’ll look at some of the terminology that’s used. (less typing, for people)

Linear Search:

Let’s figure out how much time it’ll take to find an element in a linked list.

Start with linear search of linked list:  let’s count how many times each line gets executed:

What if 

 the list is empty?

 the first element matches what we’re looking for?

 the second element matches what we’re looking for?

 the last element 

 the no element matches what we’re looking for?

Looking at this, we notice a couple of things

 The most important factor in the number of lines executed is how many list elements we must traverse.

 As we traverse more and more, the overhead from, say, checking if front == NULL is less and less important.

 Total time also depends on factors outside our control: 
if the list is empty, very little time.  
If the LinkedList is repeatedly asked for stuff that isn’t present, then a lot of time.

 We can analyze each category of requests separately:
Best Case: Either the list is empty, or we’re asked for the first element
Average Case: Assuming a uniformly random (EXPLAIN) distribution of inputs, we will, on average, ask for an element that’s in the middle.
Worst Case: The LinkedList is asked for element that’s not present.

 Further, we'll be looking at this from what appears to be an abstract perspective: N as the number of inputs, as opposed to the exact number of lines / machine instructions executed.
 If we wrote the C++ code differently, we’d have a different number of lines.  
If the compiler optimizes things differently, different numbers of machine instructions will be executed.

Mathematically Analzying Find:

 Do min case: constant time
 Do Avg case:  linear time

 Do Worst Case: 

 Mathematically, show that Avg case and Worst case are within constant distance of each other.

o These functions are more-or-less equal.

o Note: This happens so often, that’s there’s terminology (jargon; shorthand): Big Theta = = “same order of magnitude”

o They’re also both equal to or less than the other: Big Oh.

	Name
	Meaning

	o(n) – little oh
	strictly smaller

	F(x) = o ( g(x) )
	F(x) is strictly smaller than g(x)

	O(n) – Big Oh
	smaller or equal

	F(x) = O( g(x) )
	F(x) is smaller or equal to g(x)

	((n)  - BigTheta
	Equal

	F(x) = (( g(x) )
	F(x) is equal to g(x)

	((n) – BigOmega
	larger or equal

	F(x) = (( g(x) )
	F(x) is larger or equal to g(x)


Analyzing Binary Search:

Do Similar for binary search, then compare the two algorithms.

Thus, we can say that for any given array

It will take at most log2(size_of_the_array) passes through the routine in order to find the element, or else determine that it's not there.

Worst Case Running Time = log2(size_of_the_array)

Best Case Running Time = constant time (we find it immediately, or there are no elements in the array)

Average Case Running Time = ½ log2(size_of_the_array)

(Assuming a uniform distribution of requests)

Again, the average & worst case differ only by a constant factor

As the size of the array gets increasingly large, the constant factor will be less and less important.

Thus we'll ignore it (mathematically), by noting that they are asymptotically pretty close to each other, and say that they're BigTheta() of each other.

Comparing the Two Algorithms

In the best case, they're both O(1) (constant time), so in an ideal run, there's no difference.

Further, for each algorithm, the average & worst case times are the same, so we only have to do 1 comparison: is a running time proportional to N faster or slower than a running time proportional to log2(N)?

Clearly, log2(N) is less than N, for large values of N

We can say that log2(N) is O(N)

("Log base 2 of N is Big Oh of N")

("Log base 2 of N is asymptotically less than or equal to N")

Sorting

Important aspects to keep in mind:

Worst-Case Running Time

Average Case Running time

Does it require any extra space?

Does it require any other considerations?

How can it be applied to different implementations?

Array

Linked List

BubbleSort

You've got an array, you'd like to make sure it's in some order

For example, the first element is the smallest, the last largest

Or vice-versa.

This will allow shorter search times

How does it work?

Find the largest, unsorted value, and put it in it's final location.

That value is now 'sorted'

Repeat the first step (until we've sorted everything in the array)

If I were to write out the algorithm in more detail, but not in code:

Loop N times, where N is the number of elements in the array

From the bottom slot of the array up to the (top slot – 1):

If (the element in this slot less than the element in the slot above it)


Swap the contents of the slots

Notice that each time through the outer loop we 'catch' the largest value

And move it to it's final location.

Thus, the first time, we grab the largest value

The second time, the second largest, etc,etc.

Thus, the values in the array are 'bubbled up' to their final location.

<Demonstrate on the board>

What's the running time of BubbleSort?


You're going to make N passes

Each pass, you'll do work proportional to N

(With an optimization, you can do N-1, N-2, N-3, etc)

So it's N * N, more-or-less

that's N2 work.

How does this compare w/ the other two?

Analysis:

Running Time: 

Worst Case: O(n2)

Average Case: O(n2)

Requires a constant amount of extra spaces 

(i.e., a fixed number of local variables, no matter how many items are sorted)

No other special considerations that I can think of.

Can be used on arrays, and linked lists.

ICE : Modify the BubbleSort routine so that it sorts things into descending order

Selection Sort

People notice that with BubbleSort, you end up doing a huge amount of swaps.

If an element is at the opposite end of the array from where it should be, you'll end up moving it a number of times equal to length of the array.  

If the array is in reverse-sorted order, you'll end up doing a really large amount of work, just to push each element to the other side of the array/linked list.

What if we change BubbleSort slightly, and don't move the current element until we know where it'll go?

This will require a slight change of perspective: with BubbleSort, we ended up finding the Nth largest element in pass N, as a result of our bubbling.

Instead, here, we'll look for the Nth largest element in pass N, and put it into the next to the N-1th largest element (which we found & placed during the previous loop).

Explain the idea about how to view the array as partially sorted, partially unsorted.

Just like in BubbleSort, you can sort from the large end downward, or the low end upwards.

There's a code sample in the book which sorts starting at the large end, here's some code that sorts, starting at the low end:

SelectionSort( int *Array, int sizeOfArray )
{
int iMin; 

for( int iB = 0; iB < sizeOfArray ; iB++) 

{ 


for( int iA = iB, iMin = iB ; iA < sizeOfArray ; iA++ ) 

{ 

if( A[iMin] > A[iA] )

{
min = A[iA];
iMin = iA;
} 

} 

//move elements at iMin to iB and vice-versa, within A

int temp = A[iB];

A[iMin] = A[iB];

A[iB] = temp;

}
} 
Analysis:

Running Time: 

Worst Case: O(n2)

Average Case: O(n2)

Requires a constant amount of extra spaces 

(i.e., a fixed number of local variables, no matter how many items are sorted)

No other special considerations that I can think of.

Can be used on arrays, and linked lists.

Looks a lot like BubbleSort

Asymptotically, it is.

But the notation hides a lot of the details

One of the details is that constant number in front of the n2 term is a lot smaller.

Meaning that if you run BubbleSort, and SelectionSort on various arrays, you'll notice that SelectionSort seems to finish faster, although it's within an order of magnitude of BubbleSort.

Insertion Sort

Very similar to the other two methods

Except that instead of looking for the next number in the sequence and putting it into place in the sorted section, you expand the sorted section by simply taking the next element, and putting into it's place.  

It's somewhat similar to BubbleSort b/c it involves moving a lot of stuff around.

Basically works by repeatedly inserting something into the array, with each insert being in sorted order.

(Using an array) Start leftmost.  During each iteration: take the value in the slot to the right of the sorted area, and sort it into the sorted area by iterating over the sorted area, and inserting the value so as to maintain the nondecreasing property of the sorted area.  Don't forget to move all the array elements greater than the value one to the right, as you loop down it.

InsertionSort( int *Array, int size) 
{ 
    index = 0; 
    while( index < size ) 
    { 
        index++; 
        for( i = 0; i< index;i++) 
        { 
            if( Array[index] <= Array[i] ) 
            { 

 

   
// moves memory from the source (arg 1), 

// to the dest (arg2), 

// of  a given size (arg3)

                memmove( Array[i], Array[i+1], (index-i) * sizeof(int) ); 
                Array[i] = Array[index]; 
            } 
        } 
    } 
} 

Analysis:

Running Time: 

Worst Case: O(n2)

Average Case: O(n2)

Requires a constant amount of extra spaces 

(i.e., a fixed number of local variables, no matter how many items are sorted)

No other special considerations that I can think of.

Can be used on arrays, and linked lists.
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