BIT 143

Page 1 / 2

Lecture 15
Quiz

Any questions on the last class?

<Display question on the overhead>

Insertion Sort

Very similar to the other two methods

Except that instead of looking for the next number in the sequence and putting it into place in the sorted section, you expand the sorted section by simply taking the next element, and putting into it's place.

It's somewhat similar to BubbleSort b/c it involves moving a lot of stuff around.

Basically works by repeatedly inserting something into the array, with each insert being in sorted order.

(Using an array) Start leftmost. During each iteration: take the value in the slot to the right of the sorted area, and sort it into the sorted area by iterating over the sorted area, and inserting the value so as to maintain the nondecreasing property of the sorted area. Don't forget to move all the array elements greater than the value one to the right, as you loop down it.

InsertionSort(int *Array, int size)
{
 for(int iNextUnsorted = 1; iNextUnsorted < size; iNextUnsorted++)
 {
 for(i = 0; i< iNextUnsorted;i++)
 {
 if(Array[iNextUnsorted] <= Array[i])
 {

int temp = Array[iNextUnsorted];

// moves memory from the source (arg 1),

// to the dest (arg2),

// of a given size (arg3)

 memmove(Array[i], Array[i+1], (iNextUnsorted-i) * sizeof(int));
 Array[i] = temp;
 }
 }
 }
}

Analysis:

Running Time:

Worst Case: O(n2)

Average Case: O(n2)

Requires a constant amount of extra spaces

(i.e., a fixed number of local variables, no matter how many items are sorted)

No other special considerations that I can think of.

Can be used on arrays, and linked lists.

<Go on to slideshow about QuickSort>

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 2

