BIT 143
Lecture 8
Page 1 / 7

Enums

Short for 'enumeration' – meaning a list of all possible values.

Useful when you want a limited range of possible values
#define is nice, but you're using an int type, so you can say GT_NUMERIC is 0, but you can't say that only 0, 1, 2 are valid.

W/ an enum, only the values you specify can be valid.

In C++, this actually defines a brand-new type.

Thereafter, you can use it just like a class

Important Points:

1. Enum begins with enum <EnumName> {

2. ends with } ;

3. For each value, you can use any name you want - normal naming rules apply

4. Separate each item with a comma

5. You can put a comma after the last item, or not, if you want.

6. The first item has the integral value 0, by default

7. Unless otherwise specified, each item has the integral value of 1 + the value of the item before it.

8. You can forcibly assign specific values to individual item, if you want.

There's an example in the ICE.

ICE: Create & use an enum

Inheritance:

Most of the benefits from various programming language features fall into one of a couple different cateories:

1. Less bugs

2. Less typing

3. More clear what’s going on

Ex: const modifer makes it more difficult to accidentally modify something you shouldn’t (less bugs.

Defining a class, and a class constructor, means you can say “new LinkedList()”, and it’ll create all the variables for you (less typing.

Inheritance

This is a tricky, subtle concept.

Keep hitting this, and eventually it'll click

So work hard, but don't be too worried if you don't pick it up instantly.

So far, whenever we've wanted a new category (class), we've created it from scratch.

This means that we haven't re-used any other classes.

This has been ok, since each class has had almost nothing in common (behaviorally) with the other classes.

Has-A relationship: Things in a given category have a property which is best thought of as being a thing in a different category.

Again, in C++-speak: Objects of one class have a property that is best modeled using objects of a different class.

Examples:

A Car Has-A Engine:

Clearly, the engine is an important sub-part. Further, different cars might have the same type of engine, so we might want a separate class to model the Engine.

A Car Has-A Color. We can model this using an enum (if we don't have a lot of colors, or if that's not detailed enough, by creating a new class so that we can store exact RGB values)

A Car Has-A Weight. We can model this using a primitive float (or double), since it's a straight-forward value.

Ex: A2, an ErrorLog HAS-A array of BITStrings (well, pointers to BITString objects, but this is close enough).

Notice that up till this point, we've defined all our classes by the properties that they have.

(Other possible relationships:)

	Relationship
	Modelled in C++ by…
	Example

	Is-A
	Inheritance
	Honda is-A Car; the class to represent a Honda is derived from the class representing a Car.

	Has-A
	Data Members
	A Honda Has-A Color: one of the data members in the Honda class is the enum/class/etc named Color.

	Uses-A
	Being able to call methods
	A Person Uses-A Honda: The Person class is allowed to invoke the appropriate methods on instances of class Honda. Making the methods public is the easiest way to do this, although C++ has other ways, too.

	Knows-A /

Knows-About
	Pointer/Reference to thing that's known
	A Person Knows-About the Car that they own. Each instance has a pointer of to objects of type Car, which can be NULL (they don't own a Car), or point to the instance the represents their Car.

However, we notice that some things are very closely related:

A Toyota Echo, a VW Jetta, a Chevy Suburban

They all have some properties in common (like the fact that they have a Color, each has a Weight, each has an Engine), and yet they also have properties that are unique to each (the Jetta might have a diesel engine, the Suburban has a space for storing cargo, not people, etc).

We can model these common properties by categorizing them as being a subcategory of Car

Every Car has a Color

Only Jettas might have diesel engines, thus they're in their own subcategory.

One of the main points of OOP is to model this subcategory relationship, using something called inheritance.

Class B should inherit from Class A if B is a subclass of A.

Syntax:

class Base

{

public:

int x;

int y;

Base(int newX, int newY)

{

x = newX;

y = newY;

}

void PrintBase(void) { cout << x << " " << y << endl; }

} ;

class Derrived : public Base

{

int z;

public:

Derrived(int x, int y, int newZ) : Base (x, y)

{

z = newZ;

}

void PrintDerrived(void) { cout << x << y << z << endl;}

};

So you've just seen an example of declaring a class to be a sub-class of another class. So what's the big deal?

Since a Jetta IS-A Car, it also has all the methods and properties of the Car object. These properties are automatically embedded inside the Jetta object, without us doing any more work!!!!

However, the subclass is only allowed to access those methods and fields that are either public or protected (more on this, later)

Key Point:

You DON'T have to redeclare all the methods/fields from the superclass in the subclass.

Next:

Constructors

Getting at fields in the base class.

Access Modifiers:

This is summarized in a table in D&D: Fig 9.6 (page 592)

<Ignore protected for now>

For now, use public derivation – all public members of base class

can be accessed by derived class, private members can’t

Note: For now, just use public inheritance: this means that

base’s public members are public in derived,

base’s private members aren’t accessible to derived.

Draw out memory diagram of base, and derived clases

Pointers:

One of the neat things about inheritance:

If you have, say, an object of type Derrived, you can treat it as an object of type Base, since it is.

Derrived * pDerrived = new Derrived(1, 2, 3);

Base *pBase = pDerrived;

=== Show what’s happening, memory-wise ===

If you have a Car *, can you want to cast it to an Echo *?

Ans: Not if you want to be safe.

You could do it anyways, but if you’re wrong, the program

will blow up. (very dangerous.

Why we want virtual functions

The point of inheritance is to express an “is a”, or “is a subcategory of” relationship.

Saves us work – less typing, since members are copied from

parent to child

More clarity – relationship is concrete, not abstract

class foo

{

public:

 void Print() const

 {

 cout << "foo: " << x << endl;

// x = 10;

 }

 int x;

} ;

class bar : public foo

{

public:

 void Print() const

 {

 cout << "Welcome to bar!" << endl;

 foo::Print();

 }

} ;

New Stuff: Which method gets called?

Create a base & derived class.

Make sure they both have some function “Print(void)”

Declare a pointer to the derived type “ptrD”.

void main(void)

{

 foo *pf = new bar();

 pf->Print();

 bar *pb = new bar();

 pb->Print();

}

What’s going on is that the compiler decides at compile time that the pf->Print refers to foo’s version of print, while pb->Print refers to bar’s version of Print.

In other words, the type of the pointer determines which one to use.

Can be useful, usually not

Can manually have D::F call B::F using “::”

Virtual keyword

What this does is have the program figure out at runtime (while the program is running) which version to call – it will call the most specific version.

Demo – put virtual before both declarations, re-run program notice

that bar::Print gets call in both cases, and bar::~bar() gets called on delete line.

So virtual keyword says “If this instance, which I’m referring to using a pointer to a base class, is actually a more derived class, use the method on the more derived class instead of the base class.”

virtual is applied to methods themselves, NOT function calls

Def: Polymorphism: "Objects of different classes (that are related by a inheritance – by a common ancestor) respond differently to the same method calls"

The terminology isn't as important as understanding the concept.

Example:

class Shape

{

// Every shape must be located somewhere…

float x;

float y;

Taurus t;

public:

Shape(float newX, float newY)

{

x = newX;

y = newY;

}

virtual void Print(void)

{

cout << "Shape: " << x << " " << y << endl;

}

} ;

class Circle : public Shape

{

float radius;

Ford
f;

public:

Circle(float x, float y, float newZ) : Shape(x, y)

{

radius = newZ;

}

virtual void Print(void)

{

cout << "Circle: " << x << y << z << endl;

}

};

void main(void)

{

Shape *sh = new Circle(1.0, 1.0, 2.0);

// if sh == NULL, blah blah

sh->Print(); // prints "Circle: 1.01.02.0"

 // If sh pointed to a Square, it would call

 // Square::Print.

}

Constructors, Destructors, Inheritance

CONSTRUCTORS ARE NOT INHERITED!!!!!

This implies (() that they can never be virtual

(Only inherited methods can be declared virtual)

We'll create a derived class

In part to re-use the code that we wrote into the base class

(that we might want to use (call) methods in the base class

We might want to do this, even in the constructor for the derived class

If the base class portion of the new derived instance hasn't been properly initialized

*** C++ will ensure that a base class ctor is called before the derived class ctors are. ***

If you don't specify which constructor to call, C++ will call the base class's default ctor

You can specify which one to call like so:

class Base

{

public:

int x;

int y;

Base(int newX, int newY)

{

x = newX;

y = newY;

}

virtual ~Base() {}

void NonVirtualPrint(void) { cout << "Base" << x << " " << y << endl; }

} ;

class Derrived : public Base

{

int z;

public:

Derrived(int x, int y, int newZ)

: Base (x, y)

// Above line specifies that the base class ctor with 2 int

// args should be called.

{

z = newZ;

}

virtual ~Derrived() { // delete lotsa memory; }

void NonVirtualPrint(void) { cout << "Derived" << x << y << z << endl;}

};

Order of ctors for a given class named Derived:

1. The base class (if any) is (recursively) constructed

2. Any data members that are objects (NOT POINTERS, but actual objects)
are (recursively) constructed.

3. The constructor for Derived is called.

Order of Dtors:

Reverse order that the ctors were called in

(Derived::~Derived goes first, then anything that it contains, then base, etc)

ALWAYS DECLARE YOUR DESTRUCTORS VIRTUAL!!!

You’re just asking for trouble if you don’t.

At this point, try pointing out that if you were to create a data structure, such as a Binary Search Tree, you'd

Implementation vs. Interface Inheritance

So far we've looked at implementation inheritance

How to reuse code that someone else has written

However, sometimes we want to ensure that every derived class has a method, but we don't want to specify a default implementation

We want to have the derived class inherit an interface: a standardized way of doing something.

What we'll do is specify a method prototype, then specify that the base class HAS NO IMPLEMENTATION of that method.

This means that you can't instantiate the class

The class is said to be abstract.

The method is not just virtual, it's pure virtual.

We've seen this before, however we'll use it again, here in class.

ICE: Implement the "brainstorming" scenario using a sorted array, and an unsorted linked list

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 7

