Lecture 13

Quiz

Any questions on the last class?

<Display question on the overhead>

Basic Linked Lists

You've seen, and used pointers

They store an address in memory.

They can store any memory address

Valid ones from new, or the & (address-of) operator

Invalid ones – junk value, or if you've incremented beyond the end of an array

NULL

Can even hold the (invalid) address of itself

(The typing system doesn't support this, but if you've got a bug in your program….)

You've also seen, and used, classes

They force multiple fields to be contiguous in memory

These can contain pointers to other blocks of memory

Your BITString class.

An object can have, as one of it's fields, a pointer to another object of the same type.

<Diagram on the board what this will look like>

Define Term: Linked List.

Notice that while a linked list isn't a C++ language construct directly, it does specify an implementation, so it's not exactly abstract, either.

C++ syntax:

class LinkedListNode

{

public:

 	LinkedListNode *next;

	// <some type> data;

} ;

void main(void)

{

 LinkedListNode *L1 = new LinkedListNode();

 LinkedListNode *L2 = new LinkedListNode();

 LinkedListNode *L3 = new LinkedListNode();

 (*L1).next = L2;

 L2->next = L3;

 L3->next = NULL;

}

It's incredibly important that the next field be a LinkedListNode Pointer, NOT a LinkedListNode.

Just a link means infinite recursion in the definition

LinkedListNode * means that it holds the address of something in memory that happens to be a link.

Important Point:

In main, Make sure to set the final next field to be NULL

Otherwise, you won't be able to figure out where the end of the list is.

Adding Nodes To The Front/Back of a LL

The above code is nice, but we require 1 local variable (ptr) per node, in order to construct the list.

Much in the same way that pointers allow us to dynamically obtain an array, we can use pointers within a linked list to keep track of arbitrary amounts of data using just 1 local var.

We'll keep a single pointer to the front of the list, and then keep adding nodes at the front:

void main(void)

{

 LinkedListNode *front = new LinkedListNode(1);

 LinkedListNode *temp = 0;

	/* Do checks to see if front is NULL */

	// Add a new node to the front of the list

	temp = new LinkedListNode(2);

	/* Do checks to see if temp is NULL */

	temp->next = front;

	front = temp;

	// front points to node w/ data == 2, which in turn points to the

// original node w/ data == 1.

// Add a second node

	temp = new LinkedListNode(3);

	/* Do checks to see if temp is NULL */

	temp->next = front;

	front = temp;

	// Notice that we can repeat the above code as much as we want to

	// and each time adds a new node. We need one local variable

// (front), and one temp pointer (temp), yet the list itself can

// contain as many nodes as we want.

}

What if we want to add stuff to the back?

For right now, we could just keep another pointer:

void main(void)

{

 LinkedListNode *front = new LinkedListNode(1);

	LinkedListNode *back = front; //list starts w/ 1 element

 LinkedListNode *temp = 0;

	/* Do checks to see if front is NULL */

	// Add a new node to the front of the list

	temp = new LinkedListNode(2);

	/* Do checks to see if temp is NULL */

	temp->next = front;

	front = temp;

	// front points to node w/ data == 2, which in turn points to the

// original node w/ data == 1.

// Add a second node to the back of the list

	temp = new LinkedListNode(3);

	/* Do checks to see if temp is NULL */

	back->next = temp;

	back = temp;

}

What if we want to add a node in the middle? Or if we want to find a node that's been added to the list?

We need a way to examine all the elements in the list.

Traversing a Linked List

void main(void)

{

 LinkedListNode *front = new LinkedListNode();

 LinkedListNode *temp = 0;

	// Make pretend like I've got code here to generate

	// the linked list.

	LinkedListNode *pCur = front;

	while (pCur != NULL)

	{

		cout << pCur->data << end;

		pCur = pCur->next;

	}

}

Once you've got this list, you can 'traverse' it, which means to start at the beginning, and go from one element to the next, using only the pointers contained in the objects themselves.

Running Time to access this

If there are N items in the list, we'll have to spend time proportional to N in order to examine every item in the list.

There's time required to do other stuff, but as N increases, it drowns out the cost of everything else.

ICE: Create, in main, a bunch of LinkedListNode objects, and string them together.

Traversing a Linked List

class LinkedListNode

{

public:

 	LinkedListNode *next;

	int data;

	LinkedListNode(int newData)

{

	data = newData;

next = NULL;

}

} ;

// For this lecture, I'll use a global variable, so as to focus

// on the logic of the operations, and not get distracted by

// class stuff.

LinkedListNode *pStart = NULL;

void main(void)

{

	// First, create a list of 3 items:

// The first item in is the last item in the list

	// See the note above for why we're using a global variable.

	pStart = new LinkedListNode(3);

	LinkedListNode *pNewNode = new LinkedListNode(2);

	if (pNewNode == NULL) return;

	pNewNode->next = pStart;	// This order is very important

	pStart = pNewNode;		// The new start of the list is

// the new node.

	LinkedListNode *pNewNode = new LinkedListNode(1);

	if (pNewNode == NULL) return;

	pNewNode->next = pStart;

	pStart = pNewNode;

	// Next, we want to print all the items in the list.

	LinkedListNode *cur = pStart; // Could have re-used pNewNode,

							// but this will be more clear.

	int nodeIndex = 0;	// This will be the index, NOT COUNT, so it

// starts at 0, NOT 1

// The above work all leads up to the following, which

// demonstrates how to traverse a linked list.

	while (cur != NULL)

{

cout << "The data stored in node number " << nodeIndex <<

" is: " << cur->data;

		cur = cur->next; // move to the next node.

nodeIndex ++; // increase the index by one.

}

}

Notice that the cur pointer 'walks along' the list of nodes

<Diagram what the memory looks like, and walk through the code>

ICE Part 1, 2, 3: Create a list of 5 objects, and print out their values

Façade Design Pattern

So far, we've kept the pointer to the start of our list in a local var, in main.

This is awkward for a number of reasons:

We can only have one list

We need to manage the list using functions, not in an OOP way.

We can't pass the head of the list to other functions

(If we did, and they popped the top of the stack, what would happen?)

Since the head of the list can change, we can't pass that around

So we'll create another class, named StackOfInts, and this will have a private pointer to the head of the list of LinkedListNodes.

Much like a façade presents a building to the outside world (while hiding some details), the the StackOfInts class will present the "Stack" abstraction to the rest of the program, hiding some of the details from the rest of the program.

In main, etc, we can create, and then pass around, a pointer to the StackOfInts object, even if the stack is completely empty.

void main(void)

{

StackOfInts *stack = new Stack();		// start w/ empty stack

stack->AddToTop(3);

stack->AddToTop(2);

stack->AddToTop(1);

stack->Print();

int i;

stack->getTopItem(&i);

cout << "top item: " << i << endl;

stack->RemoveFromTop();

stack->RemoveFromTop();

stack->getTopItem(&i);

cout << "bottommost item: " << i << endl;

stack->RemoveFromTop();

if (stack->IsEmpty())

cout << "The stack is correctly empty!" << endl;

else

cout << "Stack isn't empty!" << endl;

}

Implementing A Stack As A Linked List

So now we've got a new programming technique: linking things throughout memory.

Let's go back, and re-implement those two basic data structures, but this time using a linked list as the implementation.

<Illustrate the basic idea on the board>

We'll keep a local variable as a pointer to the first item in the list.

When we 'push' a new piece of data onto the stack, we'll create a new LinkedListNode object, fill in it's data (using the constructor), then insert it at the front of the list (the "top" of the stack).

The order in which you assign values to newItem->next, and top, is extremely important.

Demo doing this in the wrong order.

Notice that I'm not using the façade pattern – I'm just using normal procedural programming. Implementing this as an object is left as an ICE.

void main(void)

{

LinkedListNode *top = NULL;		// start w/ empty stack

	LinkedListNode *newItem = NULL;

	

// Push the first item onto the stack

	newItem = new LinkedListNode(1);

newItem->next = top;	// Note that this sets next to NULL

top = newItem;

	// Push the second item onto the stack.

	newItem = new LinkedListNode(2);

newItem->next = top;	// Note that this sets next to Obj#1

top = newItem;

//etc.

}

Likewise, popping stuff off the stack is pretty straightforward, too:

Popping stuff onto a LinkedListNodeed stack:

void main(void)

{

LinkedListNode *top = NULL;		// start w/ empty stack

	LinkedListNode *newItem = NULL;

	

// Push the first item onto the stack

	newItem = new LinkedListNode(1);

newItem->next = top;	// Note that this sets next to NULL

top = newItem;

	// Push the second item onto the stack.

	newItem = new LinkedListNode(2);

newItem->next = top;	// Note that this sets next to Obj#1

top = newItem;

//Pop the most recent item back off:

// In this case we don't need this check, but it's good practice.

if (top != NULL)

{

LinkedListNode *tempPtr = top;

top = newItem->next;	// First remove it from the list

delete tempPtr;		// THEN delete it.

}

}

Again, the order is extremely important – if you delete the object first, something else might use that memory, and then you'd have lost your pointer to the thing you just trashed.

Note: In debug builds, it's very common to have the delete operator fill the deleted memory with some arbitrary bit pattern, in an effort to detect situations exactly like this.

Clearly, you have to check that the top pointer is valid before using it.

Implementing A Queue As A Linked List

At this point, you've implemented a stack using a linked list

How would you implement a queue?

Clearly, we'll need to stick with the façade idea for the class.

The main difference is that we now need to know where the list begins and ends, since we add to one end, and remove it from the other.

Adding to the back:

void main(void)

{

LinkedListNode *back = NULL;		// start w/ empty queue

LinkedListNode *front = NULL;

	LinkedListNode *newItem = NULL;

	

	newItem = new LinkedListNode(1);

newItem->next = back;	// Note that this sets next to NULL

back = newItem;

front = newItem;

	newItem = new LinkedListNode(2);

newItem->next = back;	// Note that this sets next to Obj#1

back = newItem;

// front remains set at Obj #1

}

The tricky part is removing the front item.

The front item has a next pointer to NULL

The front item doesn't keep track of the item behind it.

But, we know that from the back, we can traverse the whole list

We just have to make sure to stop at the item before the last item.

// To remove an item:

	LinkedListNode *pCur = back;

if(pCur == NULL)	// Could be an empty list

{

	front = NULL;

}

else

{

	// If there's only 1 item in the list

	if (pCur->next == NULL)

{

// delete it, then set back,front to starting state.

	delete back;

back = front = NULL;

}

	

// While there's at least 2 items between pCur

// and the end..

while(pCur->next->next != NULL)

{

	// Move one item down the list

	pCur = pCur->next;

}

// pCur now points at the item before the last item

// in the list.

delete pCur->next;	// delete it.

pCur->next = NULL;	// Then sever the connection

front = pCur;		// Set front to point to the one

// behind what it was

}

�

�

�

�

BIT 143	Lecture 13	Page � PAGE �1� / � NUMPAGES �8�

BIT 143	© 2002, Mike Panitz, ® 2002, Mike Panitz	Page � PAGE �1� / � NUMPAGES �8�

