BIT 143
Lecture 5
Page 9 / 9

Lecture 5
Quiz

Any questions on the last class?

<Display question on the overhead>

Pointer To An Object

Make sure to stress how to diagram memory, since they'll have to do it for the ICEs

void main(void)

{

Point pt(1.0F, 7.2F);

Point *p0 = &pt;

Point *p1 = new Point(3.0F, 1.2f);

Point *p2;

p2 = new Point(1.0f,2f);

if (p1 == NULL || p2 == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

if((*p1).Compare(p2))

cout << "p1 and p2 are the same" << endl;

else

cout << "p1 and p2 aren't the same" << endl;

if((*p0).Compare(p2))

cout << "p0 and p2 are the same" << endl;

else

cout << "p0 and p2 aren't the same" << endl;

if(pt.Compare(p2))

cout << "pt and p2 are the same" << endl;

else

cout << "pt and p2 aren't the same" << endl;

delete p1;

delete p2;

}

Illustrate how the memory diagram changes, on the board

By saying new Point(1, 2) we ask for new memory, at runtime

The memory is allocated on the heap, NOT on the stack

So it's lifespan is independent of any single function

The memory will be there until the program exits

Or until we delete it.

Again, new might fail, we gotta take that into account.

new Point(1.0f, 2.0f) does two things:

1. Attempts to get memory for the object

2. Calls the constructor on that memory
Constructors can be overloaded – the arguments clearly identify which one to call.

ICE: Changing main so that it uses pointers instead of locals

An Object Which Contains Other Pointers

Change (in main) the Point objects to being pointers to point objects

class Point

{

float *x;

float *y;

public:

Point(float newX, float newY);

~Point();

void Print(void);

bool Compare(Point *ptOther);

} ;

Point::Point(float newX, float newY)

{

x = new float;

y = new float;

if (x == NULL || y == NULL)

{

delete x;

x = NULL;

delete y;

y = NULL;

}

else

{

*x = newX;

*y = newY;

}

}

Point::~Point()

{

cout << "Destroying point";

Print();

delete x;
// Gets rid of the memory that x,y points to

delete y;
// NOT x,y themselves.

}

void Point::Print(void)

{

if (x == NULL || y == NULL)

{

return;

}

cout << *x << " " << *y << endl;

}

bool Point::Compare(Point *ptOther)

{

if (x == NULL || y == NULL)

{

return;

}

if(ptOther->x == x && ptOther->y == y)

return true;

else

return false;

}

void main(void)

{

Point p1(3.0F, 1.2f);

Point p2(1.0f,2f);

if(p1.Compare(&p2))

cout << "p1 and p2 are the same" << endl;

else

cout << "p1 and p2 aren't the same" << endl;

}

Point Out:

1. Mechanics of Pointers
-> is used, which is equivalent to (*ptOther).x
inside the Compare method, we can access ptOther->x since the method is part of the same class as x
 Access-specifiers take effect based on classes, not objects
2. Memory is allocated as part of the object's construction
This is done in the constructor.
Note that since the constructor can't return a value, you've got a difficult problem in figuring out how to convey that new has failed (just in case it does)

a. You could have a separate method, IsOK that you have to call.
Kinda defeats the purpose of a constructor

b. You could have a check at the beginning of each method thereafter, which will gracefully exit. Every other method can check "am I ok?"
 A lot of work, but you can have methods call a single,
 helper method

c. Could look for indirect methods
Set a global/class static variable

d. You could throw an exception.
Probably the most elegant way, but we won't see this yet.

3. All the memory that the class created is destroyed in the destructor
Since the class allocated it, it owns it, and so it must hold on to it until it no longer needs it.

4. Notice that the pointer to the float is created soon after the object is, and it'll exist as long as the Point object does. If we forget to delete it, it'll exist until the program exits.

<< Draw out the memory of the object. >>

ICE: Modify a given class so that it'll contain a pointer to a float.

Destructors

It's nice to have the auto-init

It's also nice to have code that 'cleans up' when you're done using an object

If the programmer writing main forgets to call you Uninitialize method, your object will have leaked memory.

Much like a ctor is a special method that runs when the object is created

Dtor is a special method

That you write

That runs when the object is destroyed (when someone calls delete on it)

So if you have a class which allocates memory somewhere, in the destructor, you should call delete, and give the address stored in the pointer to that memory.

class Point

{

public:

Point()

{

x = y = 0.0F;

}

~Point()

{

cout << "Point at << x << " " << y " is about to be destroyed!" << endl;

}

/*

Code omitted for brevity

*/

private:

float x;

float y;

} ;

Important Points:

1. Destructors have the exact same name as the class, with the tilde character (~) immediately before it.
You can find this character at the top-left of the keyboard – next to the 1 key, underneath the Esc key.

2. There is NO return type.
Not even void – Destructors simply don't have return values

3. Destructors take NO ARGUMENTS
This means that there can be only one destructor per class.
However, you don't have to create one if you don't want to.

4. Exact sequence of events:

a. main starts

b. Program finds space for variable p

c. Once space has been found, the constructor is called.

d. PrintPoint is called

e. main ends: as part of this process, the space for p needs to be reclaimed. Immediately before that, the destructor for p (if it's class has one) is called.

5. The term is DESTRUCTOR, not de-constructor.

At this point, you should mostly keep this in mind for later…

<illustrate on board>

ICE: Replace the init, deInit methods w/ ctors/dtors – have these allocate & deallocate memory.

ICE: Add a destructor to your class
Order of Ctors/Dtors

First:

Ctors for global objects (if any)

When you enter a function:

When execution reaches the line at which an object is defined, it's ctor is called.

Static local variables have their ctors called only once

As you execute a function, if a nonstatic local variable (an object) goes out of scope

It's dtor is called.

If multiple vars go out of scope at once, dtors are called in the reverse order that the ctors were called in.

When a function is done, all it's (nonstatic) local vars go out of scope

When main exits:

first call any static local objects destructors

(reverse of the chronological order they were called in)

Then call any global variables dtors

(reverse of the chronological order they were called in)

Ownership Of Memory

Normally, whoever creates asks for the memory (via new) has responsibility for returning it to the heap (via delete, or delete [], for arrays)

If you have an object with a pointer to a block of memory that it owns

And you want to replace it with a new block of memory (say, one that someone else has given to you).

You first need to get rid of the block of memory that you own (via delete/delete [])

Then set your pointer to point to the new block.

ICE: Pointer to an object (that contains other pointers); ownership of mem

(Dynamic) Array of Objects

class Point

{

float *x;

float *y;

// This will factor out the code that the constructors will use

init(float newX, float newY);

public:

// default constructor – we need to write this, since we'll also

// write the one w/ 2 args.

Point();

Point(float newX, float newY);

void Print(void);

void SetXY(float newX, float newY);

bool Compare(Point *ptOther);

} ;

Point::Point()

{

init(0,0);

}

Point::Point(float newX, float newY)

{

init(newX, newY);

}

Point::init(float newX, float newY)

{

x = new float;

y = new float;

if (x == NULL || y == NULL)

{

 delete x;

 x = NULL;

 delete y;

 y = NULL;

}

else

 {

 *x = newX;

 *y = newY;

 }

}

void Point::SetXY(float newX, float newY)

{

// Do error checking (if(x == NULL...)) here...)

*x = newX;

*y = newY;

}

void main(void)

{

Point *tri = new Point[3];

if (tri == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

tri->SetXY(0,0);

(tri+1)->SetXY(1,0);

// (*(tri+1)).SetXY(1,0);

tri[2].SetXY(3,3);

}

You’ve seen a dynamic array of, say, ints

Now we want a dynamic array of, say, Points

Note that this will invoke the default constructor on each element of the array.

So what if you want to copy a string?

Your object might be given a pointer to the string so that it can copy it, but is specifically not given ownership of the original memory.

You you need to make a copy of it.

First, use a temp pointer to allocate enough space to copy it.

If this doesn't work, then bail

Second, only once you know that you've got good memory, get rid of the old memory (you allocated it the last time around (you own it (you delete [] it)

Third, copy the new string into the space you allocated

Lastly, set your object's char * pointer to the newly allocated array

ICE: Create an array of Person objects

(Dynamic) Array of Pointers

void main(void)

{

int **Ptrs = new int *[3];

if (tri == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

for(int i = 0; i < 3 ; i++)

 {

 ptrs[i] = new int;

 if (ptrs[i] == NULL)

 {

 cout << "Couldn't get the required memory!" << endl;

 return;

 }

 *(ptrs[i]) = i;

 }

int total = 0;

for(i = 0; i < 3; i++)

 {

 total += *(ptrs[i]);

 }

cout << "The total is: " << total << endl;

}

Note the syntax, particularly the way in which we've got to dereference the array slot.

(Dynamic) Array of Pointers To Objects

#include <iostream.h>

class Point

{

float *x;

float *y;

// This will factor out the code that the constructors will use

void init(float newX, float newY);

public:

// default constructor – we need to write this, since we'll also

// write the one w/ 2 args.

Point();

Point(float newX, float newY);

~Point();

void Print(void) ;

void SetXY(float newX, float newY);

bool Compare(Point *ptOther);

} ;

Point::Point()

{

init(0,0);

}

Point::Point(float newX, float newY)

{

init(newX, newY);

}

void Point::Print(void)

{

if (x == NULL || y == NULL)

{

 cout << "Object not initialized" << endl;

 return ;

 }

 cout << "X: " << *x << " Y: " << *y << endl;

}

void Point::init(float newX, float newY)

{

x = new float;

y = new float;

if (x == NULL || y == NULL)

{

 delete x;

 x = NULL;

 delete y;

 y = NULL;

}

else

 {

 *x = newX;

 *y = newY;

 }

}

void Point::SetXY(float newX, float newY)

{

// Do error checking (if(x == NULL...)) here...)

*x = newX;

*y = newY;

}

void main(void)

{

Point **tri = new Point*[3];

if (tri == NULL)

{

cout << "Couldn't get the required memory!" << endl;

return;

}

for(int i = 0; i < 3; i++)

 {

 tri[i] = new Point((float)i, (float)i);

 if (tri[i] == NULL)

 {

 cout << "Couldn't get the required memory!" << endl;

 return;

 }

 }

(tri[0]) ->Print();

(*(tri+1)) ->Print();

tri[2] ->Print();

}

ICE: Create an array of pointers to Person objects.

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 9 / 9

