BIT 143
Lecture  5
Page  5 / 5

Lecture 5

Intro:

Attendance, based on Enrollment records

Pointers and Arrays

In C++ (and C), these two concepts are really the same thing

A pointer is an address of a memory location

Points may point to just a single object, or multiple adjacent objects.

An array variable holds the address of the first memory location of the array. 

Implicit in the definition of array: most likely, there are multiple, adjacent objects at that memory location.

Mechanically, the only thing that's really different is the syntax.

So, given:

char arr[4] = { '1', '2', '3', '4' };

cout << arr[0];

prints "1" to the screen

An array element is essentially an address in memory

You can assign it's value (which is an address) to a pointer.

char arr[4] = { '1', '2', '3', '4' };

char *pFirst = &( arr[0] );

cout << *pFirst;

And get the same thing.

So in some ways, you can think of an array as being a pointer whose value you can't change, with different syntax.

ICE: Write a function that will print the first element of an array. (Optional)

Pointer Arithmetic & Arrays

char  ar[3] = { '1', '2', '3'};

char *ptr;

ptr = ar;

By doing so, you can now access the first element of the array.

You can also perform arithmetic on the pointer

You can add, subtract, etc, since the address is just a number

HOWEVER, you don't add directly to the address

You actually add N * sizeof(a single array element)

So ptr++ doesn't move ptr 1 byte forwards, it moves it one element (1 char) forwards.

In this particular case, a char is 1 byte, but if you had, say, an int pointer, you'd be moving forwards 4 bytes.

You can use:


+, -

++ / --

+=, -=

Example:

char ar[3] = { '1', '2', '3'};

char *ptr;

ptr = &ar[1];

cout << *ptr << end;  
//prints 2

ptr++; 



// move the pointer up by one

cout << *ptr << end; 
//prints 3

ptr--; 



// move the pointer back one

cout << *ptr << end;
//prints 2

ptr -= 1; 


//move the pointer back another integer

cout << *ptr << end;
//prints 1

ptr = ptr + 2; 

// jump to the end of the array

cout << *ptr << end;
//prints 2

Using pointer arithmetic, we the following produces: "22":

int arr[4] = { 1, 2, 3, 4 };

int *pInt = arr;

cout << arr[1] << *(pInt+1);

Likewise w/ arr[i] and *(pInt+i), for any i
Remember that there's no way to tell the size of an array, just by looking at it!

(Technically, this isn't always the case – sizeof, when applied to an array that you've statically declared in the same scope, will tell you the size.  So if you say int foo[30]; cout << sizeof(foo) <<endl;, you'll get 30 * sizeof(int) == 30 * 4 == 120 as the result.  But ONLY because you just declared the array right there, AND was declared statically (i.e., instead of via the new operator))
In general, you need to store the length (in a separate variable)!!

Make sure to point out the ‘equivalence’ between pointers and arrays

The bracket syntax for getting at elements of an array can be used with a pointer:

int ar[3] = { 1, 2, 3};

int *ptr = ar;

cout << ptr[0]; // same as ar[0]

ptr[1] = 4; // just doubled the value of the second location in memory

Pointer syntax for getting with an array variable, as long as you don’t change the value of the array variable.
int ar[3] = { 1, 2, 3};

int *ptr = ar;

cout << *ar; // same as ar[0]/*ptr

cout << *(ar + 1); // same as ar[1];

*(ar + 2) = 6; // double last element of the array

ar++; // this line WILL NOT COMPILE, since we’re attempting to


 // change the value of “ar”

ICE: Print all the elements of an array

It may be best to divide the class up, and have half do it one way, the other half do it the other way, then get both to write their answers on the board, instead of having each person do both ways in class.

C-style strings in C++

In C++, strings are normally represented as an array of chars

However, what makes a string different from a character array is that for strings, the last char has to be a NULL char (0)

<Draw this on the board>

So, for a normal array, you have to pass the length to any functions that manipulate it.

But for a string, you don't need to pass the length separately, since you can figure it out at run-time.

Declaring a string:

char foo[] = "My str";

C++ will figure out what the length of the array (the string) needs to be

Including the terminating NULL character.

Note that blank spaces are each represented by 1 character

Note that the empty string ("") is a character array with just one character: 

The terminating NULL character.

<Draw what the memory looks like on the board>

Your homework assignment asks you to implement a couple string – manipulation routines

Most of these are standard ; at work, you wouldn't waste time writing these yourself.

However, they're really good interview questions, and demonstrate the whole pointer-array thing pretty nicely.

So take the time to both familiarize yourself with how they work.

Then try and tackle the homework problems.

ICE: Print out all the characters in an string
Dynamically Creating Arrays

So you've seen how to dynamically create individual blocks of space

The real utility of pointers is that you can create a bunch of blocks of space.

We'll start w/ the dynamic creation of arrays.

Later, move on to dynamic creation of arrays of pointer/objects

Example:

int *arr;

arr = new int[10];

if (arr == NULL)

{


cout << "COuldn't get the mem for the array!" << endl;


exit(1);

}

for (int i = 0; i < 10; i++)

{


arr[i] = i;


cout << arr[i];

}

delete [] arr;

However, we don't have to use a constant number for the argument to new:

cout << "How many numbers should I print?" << endl;

int c;

cin >> c;

int *arr;

arr = new int[c];

if (arr == NULL)

{


cout << "COuldn't get the mem for the array!" << endl;


exit(1);

}

for (int i = 0; i < c; i++)

{

arr[i] = i;

cout << arr[i] <<endl;

}

delete [] arr;

Important Points:

1. new, delete is case-sensitive, just like before

2. You must follow the type with brackets ( [   ]  ), and the size is written directly in between.

3. You can express the size as a constant value, as in the first example, or else put an integer variable whose value will be used as the size, as in the second example.  If you wanted to, you could write an expression that evaluates to an integer value as the size.

4. You ABSOLUTELY MUST USE delete []
(Failure to include the brackets may result in C++ not calling the destructor for some of the array elements.)

5. If you're allocating an array of characters, with the intention of storing a string inside it, don't forget to add a space for the NULL terminator!!!
In particular, strlen returns the number of characters in a string, NOT INCLUDING THE TERMINATING NULL. (Note that this stops at the first NULL it finds, and returns a count of all the non-null characters previous to that terminating character)

(If pointers & arrays are the same thing, why can't we call new & assign the value back to an array variable?)

However, you can't change the address of an array variable

You weren't allowed to do ++ on it

You're not allowed to change it to the result of new

So you have to use pointers, instead.
BIT 143
© 2002, Mike Panitz,  ® 2002, Mike Panitz
Page  5 / 5

