BIT 143: In-Class Exercises
Lecture 18
Page 1 / 2

C++ Templates

Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter. When working with a partner, make sure that each of saves your own copy.

Part 1: Create And Use A Function Template

Imagine that you're creating software that will be used by, say, Enrollment Services. That program will need to ask the user a bunch of different questions, and for each question, the user should give a number to the program. Further, the number should be in a specified range. We'd like to create a single, generic function that can used in a number of different places. For example:

void main(void)

{

...

int numStudents = ValidateInput("How many students in the class?", 1, 500);

...

float GPA = ValidateInput("What's the student's GPA?", 0.0, 4.0);

...
}

Create a function that will prompt the user to input a number. The prompt itself should be a character string passed in at runtime (the first argument in the above examples), as should the lower and upper bounds for the number (the second and third arguments). You should create a generic version of the function, so that the user can input either ints (if an exact count is needed), or doubles (if the user needs to input a measurement). Obviously, you should try calling the function in order to test it.

Part 2: Create A Simple, Generic Queue

Create a generic class to represent a queue – in order to finish this during the time provided in class, you're free to simply move all the elements towards the one end when the front-most one is removed. When implementing this, you may assume that only types whose (default) constructors and destructors won't have any bad side-effects, and for whom the default assignment operator will do the right thing.

Obviously, you should instantiate this, in order to make sure that it's working

Part 3: Create A Generic Queue Of Pointers To User-Defined Objects

Make a copy of what you did in the previous part, and then modify it so that instead of storing objects directly, you should store pointers to the objects, instead.

Part 4: A Generic Queue With Nontype Parameters

Modify the code that you wrote in the previous part so that in addition to the primary parameter of the type, it takes another, nontype parameter which will allow the user to set the starting capacity of the queue.

BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 2

