BIT 143: In-Class Exercises
Lecture 6
Page 2 / 2

Dynamic Arrays of Pointers
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter. When working with a partner, make sure that each of saves your own copy.
Mixing Arrays And Objects And Pointers
Part 1: Pointer To An Array Of (Primitive) Objects

As a practice for the next ICE, you should write a program that has a function which will ask the user for how many integers the user will want to input. Your program should then allocate an array of ints sufficient to hold that many ints, and if that allocation succeeds, it should then ask the user for that many different integer values.
It should then print out the total and average of them.

Your function should then go through and release all the memory that had been allocated.

Part 2: Pointer To An Array Of (User-Defined) Objects

You should write a program that has a function which will ask the user for how many Grades the user will want to input (if you don't have a Grade class handy, then any class that you've created in a previous lecture will do fine). Your program should then allocate an array of these objects sufficient to hold that however many the user indicated, and if that allocation succeeds, it should then ask the user for data to fill in each of the objects.

It should then print out the total and average of them (assuming they're Grades – if not, do some similar operation on your object).
Your function should then go through and release all the memory that had been allocated.
Part 3: Pointer To An Array Of Pointers to (Primitive) Objects

You should write a function which will ask the user for how many integers the user will want to input. Your program should then allocate an array of pointers to ints sufficient to hold that many numbers, and if that allocation succeeds, it should then ask the user for that many different numbers. When you ask the user for each int, you'll have to use new to obtain space for that integer (which may fail), and assign the address of that integer to the next unused space in the array.
Your function should then print out the total and average of them.

Your function should then go through and release all the memory that had been allocated. Remember that for this, you'll need to free each pointer individually, THEN free the overall array itself.

Part 4: Pointer To An Array Of Pointers to (User-Defined) Objects

You should write a function which will ask the user for how many grades the user will want to input. Your program should then allocate an array of pointers to Grades (if you don't have a Grade class handy, then any class that you've created in a previous lecture will do fine) sufficient to hold that many grades, and if that allocation succeeds, it should then ask the user for that many different grades. When you ask the user for each Grade, you'll have to use new to obtain space for that Grade (which may fail), and assign the address of that integer to the next unused space in the array.
Your function should then print out the total and average of them.

Your function should then go through and release all the memory that had been allocated. Remember that for this, you'll need to free each pointer individually, THEN free the overall array itself.
BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 2 / 2

