BIT 143: In-Class Exercises
Lecture 13
Page 1 / 4

Basic Linked Lists

Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter. When working with a partner, make sure that each of saves your own copy.
Part 1: Create a Linked List of Objects That Store Integers

Create a class, IntListNode, which has a constructor which takes as an argument an int that it will store. Make sure that your IntListNode class contains a link to another IntListNode, so that you can create a linked list of them. Then, in main, create a linked list of these objects, such that the first object stores the value 1, the second stores the value 2, and the last stores the value 3. Then write a function to traverse the list, and print out all the values stored in it.
Part 2: Traversing The List

In order to focus more on the mechanics of using a linked list, I would recommend for this lecture that instead of creating a class named LinkedList, and implementing everything you're asked to do as methods, instead just use the LinkedListNode class like a struct (all public members, minimal methods), and write functions to do things like traverse the list, insert nodes, remove nodes, etc.

In your main function, create a linked list containing 5 LinkedListNodes, using the stack-like method you explored during the previous lecture. Since the focus of this ICE is to traverse the list, not build it, I suggest that it might be good to copy-and-paste that code if you completed it. Make sure to use a global variable to keep track of the front of the list, so that you can write functions that can easily manipulate the start of the list.

Once you've got your list, you should write a function, PrintList(), that will print the contents of the list to the screen. You should also print the index of each node, keeping in mind that an index starts at 0. Thus, the first item in the list is at index 0, the second item is at index 1.

Part 3: Printing The Data At Index N

Copy your PrintList() function, and rename it to be

PrintNode(unsigned int i). Change your PrintNode function so that instead of printing all the elements in the list, only print the data of the node at index i. Notice that unsigned ints can only have positive values, so you don’t have to worry about someone trying to print node -1. However, the caller can pass in any value that (s)he wants, so you'll have to watch out for someone asking to print the node at index 10 (or 5) in a 5 node list.

Part 4: Insert A New Node At An Arbitrary Index

Create a new function named InsertAt:

bool InsertAt(int newData, unsigned int index);

You've seen (from the lecture) how to build a function which will insert the new integer into a linked list, at the given index. I'd recommend trying to figure out how to create the same function, on your own, by tackling different cases in the following order:

Insert into an empty list

Insert at index 0

Insert at index 1, with a single-element list

Insert at index 1, with a 2 element list

Insert at index 3, with a 5 element list

Insert at index 5+, with a 5 element list

Part 5: Remove A Node At An Arbitrary Index

 Create a new function named RemoveFrom:

void RemoveFrom(unsigned int index);

You've seen how (in lecture), how to build a function that will remove a node from your linked list of nodes. Implement this function to do the same thing. While you can just copy from the lecture notes, I'd recommend taking this time to try and do it on your own, from scratch, to make sure that you really understand everything. Further, I'd recommend building the function incrementally: instead of writing the whole thing all at once, start with the first case listed below, make it work, then go on to the next case, etc,etc. The cases you should check are:

Delete a node, in an empty list (which contains no nodes)

Delete at index 0, with a list that contains one or more elements.

Delete at index 1, with a 2 element list

Delete at index 3, with a 5 element list

Delete at index 5+, with a 5 element list

Part 6: Implementing a Stack of Ints using a Linked List

Last lecture, you were given this as the interface to a stack:
class StackOfInts

{

public:

// Ctor initializes each individual object.

StackOfInts();

// The dtor for this class doesn't really need to do

// anything... yet

~StackOfInts();

// Add will attempt to add newItem to the top of the

// Stack.

ErrorCode AddToTop(int newItem);

// getTopItem is given the address of an integer

// It then copies the int at the front of the Stack

// into that integer.

// It'll return the "Stack Empty" ErrorCode if the

// Stack is empty

ErrorCode getTopItem(int *pTopItem);

// Delete will remove the front item from the Stack.

// It'll return the "Stack Empty" ErrorCode if the

// Stack is empty

ErrorCode RemoveFromTop();

// isEmpty returns true if the Stack is empty

// false otherwise

bool isEmpty();

// This is a method for debugging purposes:

// It should print out all the numbers stored in

// the stack, indicating which is the topmost item

// and which is the bottommost.

void Print();

private:

IntListNode *topOfStack;

};

Reimplement this class, this time using a linked list as your internal implementation instead of an array. Remember that the StackOfInts class will serve as a façade; internally, it'll store (in topOfStack) a pointer to the beginning of a linked list of IntListNode objects – each IntListNode object will store the actual int. Remember that when you remove the top item, you'll have to delete the IntListNode object that's on the top.
Part 7: More Features For Your Stack Class (Optional)

Once you've finished part 2, add the following methods to your class, and implement them:

// Calls getTopItem, then RemoveTopItem

ErrCode GetAndRemoveTop(int *item);

// Removes all elements from the Stack

// This will have to delete all the nodes, as well.

void Clear(void);

Part 8: Implementing A Queue As A Linked List

In Lecture 6, you implemented a Queue, using an array to store the data. You should re-implement the queue, this time using a linked list of IntListNode objects, much like you did with the stack in part 2.
class QueueOfInts

{

public:

// Ctor initializes each individual object.

QueueOfInts();

// The dtor for this class doesn't really need to do

// anything... yet

~QueueOfInts();

// Add will attempt to add newItem to the end of the

// queue.

ErrorCode Add(int newItem);

// Delete will remove the front item from the queue.

// It'll return the "Queue Empty" ErrorCode if the

// queue is empty

ErrorCode Delete();

// getFrontItem is given the address of an integer

// It then copies the int at the front of the queue

// into that integer.

// It'll return the "Queue Empty" ErrorCode if the

// queue is empty

ErrorCode getFrontItem(int *pFrontItem);

// isEmpty returns true if the queue is empty

// false otherwise

bool isEmpty();

private:

IntListNode *front;

IntListNode *back;

};
BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 1 / 4

