BIT 143
 In-Class Exercises
Lecture 5

Pointers And Objects

Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

Pointers, Objects, and new/delete

Part 1: The IsTheSame Method

Take a class that you've written, such as the Grade class that you created during the prior lecture. Add a method to it, named IsTheSame. It takes as it's argument another object (of the same time – in case, Grade), and returns a bool value – true if the objects contain the same data (for Grade objects, this means that the grades are the same type (audit, numeric,etc), and if (and only if) the grades are numeric, then the same number grades, as well). Write your method up, and test it by creating several course objects, and seeing which ones are 'the same'
Part 2: Manipulate an object using a pointer

Using pointers and objects isn't fundamentally difficult, although many people have a lot of trouble with the syntax. I think it mostly comes down to a "Do I use the variable, the variable with a *, or the variable with a ->?" sort of question. It would be a good idea to practice by taking the code that you've been writing, and adding to Grade *'s to it. For example:
void main(void)

{

Grade bob(GT_NUMERIC, 3.0);

Grade mary(GT_NUMERIC, 4.0);

Grade *pB = & bob;

Grade *pM = &mary;

pB->Print();

pb = pM;

pb->Print(); // will this differ from the last Print

 // command?

...

You'll then have to go through and modify the rest of your program so that instead of using the bob and mary objects directly, you'll use the pointers to them. The next part of these ICEs will ask you to re-write the IsTheSame method using pointers.

Part 3: Passing an object by reference, using a pointer

At this point, you've seen how to access objects using pointers, and also how to pass data by reference, using pointers. You should modify your IsTheSame method so that instead of taking another object as a parameter, it should take a pointer to another object. In other words, you should change it from:

bool IsTheSame(Grade b);

To being

bool IsTheSame(Grade *b);

You should also try modifying the object that b points to, and print out the value of joe before and after making the call in main, just to see for yourself that the object you're passing is indeed being passed by reference.

You should then draw a memory diagram of what the stack and the heap will look like when you're on the last line of the IsTheSame method.
Part 4: Dynamically Obtaining Memory

You might wish to start by creating a single new integer, and making sure that you can assign a value to it, get the value back out, etc, etc.

(When declaring your integer point, you can put the "ptr" prefix at the beginning of the name, if it helps you keep track of which variables are pointers, and which aren't.)

As a result of doing this, you'll notice that while you can do everything you could with a normal integer, you'll have to tweak things a bit in order to use the pointer syntax – instead of simply saying, for example:

numberOfStudents = 4;

You'd have to say

*ptrNumberOfStudents = 4;

Since you don't want to leak memory, you should make sure to delete the dynamic memory.

Part 5: Dynamically Obtaining Memory For An Object

Go back to the code you've written for the Course objects, and use new to dynamically obtain a couple of objects. Make sure to manipulate them using pointers, since that's what you're now using (
Part 6: Dynamically Obtaining Memory Within An Object

Continuing with the Course class, you should change your class's data member(s) so that instead of using a primitive type, you should instead use a pointer to that type.

So, for example, if your Course class has a single data member named numberOfStudents, which is an int, you class declaration currently looks like:

class Grade

{

// private declarations:

int numericGrade;

You should change this so that it looks like:

class Grade
{

// private declarations:

int *ptrToNumericGrade;

(You can put the "ptr" prefix at the beginning of the name, if it helps you keep track of which variables are pointers, and which aren't.)

Likewise, if you chose to declare space for a string as a character array, you should change it to using a pointer, so that you can dynamically allocate just enough space for the string.

As a result of this change, you'll have to alter how all the other methods in your class work – instead of simply saying, for example:

numberOfStudents = 4;

You'd have to say

*ptrNumberOfStudents = 4;

Additionally, you'll have to make sure that your class allocates the memory before it attempts to dereference it's pointer. Add a method named Initialize() which will create the spaced needed for the int, and make sure to call it from main. If you're creating a class that dynamically allocates a string, then your Initialize method will need to receive (through a parameter) a pointer to an existing string, which it should copy.

Since you don't want to leak memory, you should make sure to add a method to your class which will delete the dynamic memory. Name this Uninitialize, and make sure to call it from main, as well.
BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 4 / 4

