BIT 143
 In-Class Exercises
Lecture 4

Pointers And Arrays; Pointers and Objects

Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

Arrays

Part 1: Print the first element of an array (Optional)

Write a function named Print that has a single parameter: a pointer to a character. Your function should print out the value that this parameter points to (don't print out the value of the pointer itself!) In main, create an array of, say, 4 characters, and initialize the array to hold some data. Use the Print function to print out the value of the first element of an array. You should be able to print out that element using a pointer, both by dereferencing it, and by using standard array notation. Within main, you should be able to print out the first element of the array using the array directly, again by both dereferencing it, and by using the standard array syntax.

Part 2: Print everything in an array

You should create a function named Print which has two parameters – the first is a pointer (to the first element in the array), the second is an integer representing the number of spaces in the array. Print should print all the elements of the array.

The first issue that you'll need to tackle is how your Print function will know the length of the array. Even though Print uses a pointer to access the array elements, the memory itself is still an array. Thus, you'll need to use the second parameter to know when to stop.

How will you print all the elements of the array? At this point, you basically have to use pointer arithmetic 1. There are two ways that you can go about doing this

1. Repeatedly adding an ever-increasing number to a pointer (whose value doesn't change)

2. Repeatedly moving the pointer's value up by one
(This will move the pointer “forwards” one array element.)

You want to learn both methods.

Method 1:

If your original parameter is named ptrChar, you could write:

cout << *(ptrChar + 1) << endl;

Because we've surrounded the ptrChar + 1 in parentheses, that gets evaluated first, and evaluates to the address of the next character (which is not necessarily the next byte!!) 2. The * (dereference) operator then gets the value stored at that location in memory, which is the second element of the array. Notice that although we've written ptrChar + 1, the value of ptrChar itself doesn't change. In order to print out the next element, we could use ptrChar + 2, and so on. This is sometimes called "pointer offset notation", since it uses a pointer whose value doesn't change, and an offset (a number to add to the pointer).

You should write code that will print all the array elements using this method. Make sure to save a copy of this version of the function before starting on Method 2, for your own records.

Method 2:

If your original parameter is named ptrChar, you could write:

ptrChar++;

cout << *ptrChar << endl;

The first line of the sample code will increment (increase by one) the pointer. Since we're using pointer arithmetic, the value of the pointer will be increased by the size of one element, which may or may not be one byte 2. The * (dereference) operator then works like normal – it gets the value that the pointer refers to. In this particular case, the pointer is pointing at the second element in the array.

If you execute the sample code a second time, you'll end up printing out the third element of the array, and so on, and so forth. You should write code that will print all the array elements using this method.

1: Technically, you could also use the array subscript notation on the pointer, but we're going to ignore that for the sake of clarity.

2: In most languages, including most implementations of C++, a char is 1 byte in size. So in this particular example, the value will be one byte larger than the value of the pointer.

Part 3: Find the largest element of an array (Optional)

If you finish with previous part, please go on and write a function ArrayMax that will find the largest element of an array, and return a pointer to the slot that the contains the value. Your main function should print out the largest element in the array, using ArrayMax.

Strings
Part 4: Print a C-Style string

In Part 2, you wrote two versions of the Print function, each of which prints all the elements in an array. Copy them, and modify your copies so that instead of printing all the elements in an array, they'll print all the characters in a C-style string. Make sure to remove any parameters that you no longer need.

Part 5: Print the length of a C-style string (Optional)

In the prior part, you wrote a routine that would print all the characters in a C-style string. You should be able to write, from memory, a very similar function: one that returns the length of the C-style string (not including the terminating NULL character) back to the caller. In order to test this function, you'll need to create a number of different C-style strings, and check their lengths. Make sure that your routine works correctly for strings that are empty (""), and if someone passes in a NULL pointer.

Part 7: Dynamically Obtaining Memory FOR AN ARRAY!

The objective here is to make sure that you're comfortable creating an using arrays of variables, dynamically.

Create a function which takes as it's parameter the size of the new array. The function should allocate the array, then return it. Think about how this works, and consider such details as what you should return if new fails. Notice that you'll have to use pointer syntax to make this work.

Once you've got the array (back in main), fill it up with data, and print it out (or whatever else you want to do to convince yourself that it is, indeed, a normal array). Notice that while you could use pointer syntax, a better way to go would be to use array syntax on the pointer (why?).
Part 6: Copying a C-style String (Optional, but really really good practice)

You should write a function MakeSpaceAndCopyString, which will be given a string as it's sole argument. It should return the value true if it was able to copy the string, and the value false if it isn't. Your function should first check to see if it's argument is NULL, and if so, it should immediately return false (since nothing was copied). If the string pointer isn't NULL, then it should figure out how much space is needed to store the string (don't forget the NULL terminator at the end!), and attempt to allocate that much space using new. Assuming that succeeds, you should then copy the first string, character by character, into the new space.
BIT 143
© 2002, Mike Panitz, ® 2002, Mike Panitz
Page 3 / 3

