BIT 143: Assignment 4
Page 3/3
11/8/2005

Classes, Pointers and polymorphism
DUE DATE: Wednesday, Nov 16th, or ASAP
Part 1: Writing the program:
Objective:

For this assignment, you will create extend the console-driven CascadiaGame program you’ve been working on in the previous assignments. The main objective will be to modify the program so that it allows a programmer to extend the functionality of the game, via new commands, in an object-oriented way.
You should use the framework that is provided to you for this assignment. It's 95% the same as the framework given out for the previous assignment, but with some critical changes added to make this assignment more straight-forward. As a note, you’re not allowed to hand in your Assignment 4, and claim that it’s also your revision for Assignment 2. In other words, you should make whatever fixes you need to do in A2, then copy those fixes into A4.

Object-Oriented Commands:

In a fashion that's quite similar to A2, the CommandStore will be responsible for mapping(translating) text into commands. However, in A2, the CommandStore actually took a string, and translated/mapped it to a NUMBER, which the rest of the program then used to figure out what to do (i.e., in that switch statement in the CommandLogic routine). While that's all well and good, it's a structure that's prone to error, if you want to add new commands, because it's not entirely clear what you need to do in order to add a new command.
Instead, we want to make it clear what needs to be done, which we'll accomplish by creating an abstract base class, named Command (see Commands.h). This base class will never be instantiated directly (this is what abtract means – we'll never create a Command, but we will create instances of command subclasses, like CommandGet, etc), but it does contain all the methods that a typical command needs to implement. The Command base class, and all the derived Command classes that you'll need, are already provided to you.
Your job is to implement the CommandStore class again, but this time, instead of mapping a string to a number, you'll take a string from the user, and if it matches a command that the CommandStore knows about, it will call the doCommand method on that command object. In order to do this, the CommandStore will keep an array of Command pointers, but each pointer will actually point to an object that's a subclass of Command, such as CommandGet, or CommandHelp, etc.
new, delete:

You should make sure that you're using the new operator in at least two separate places. You're probably already doing this in your CommandStore class, but if not, then make sure you add this functionality somewhere else. Don’t forget to release (delete) memory that you’re no longer using!
Group Work, Commenting:

You are not allowed to work in groups for this assignment. You should start, finish, and do all the work on your own. If you have questions, please contact the instructor.

Additionally, you should aggressively comment your code, paying particular attention to areas that are difficult to understand. If you found something to be tricky when you wrote it, make sure to comment it so that the next person (the instructor, who's grading you) understands what your code is doing. It is not necessary to comment every single line.

The purpose of new requirement is to both help you understand, and have you demonstrate, a thorough understanding of exactly how your program works.

Every file that you turn in should have:

· At the top of the file, you should put your name (first and last), the name of this class (“BIT 143”), and the year and quarter, and the assignment number, including the revision number, which starts at 0 (“A4.0”). If you’re handing this in again for a regrade, make sure to increase the minor version number by one (from “A4.0”, to “A4.1").

In general, you should make sure to do the following before handing in your project:

· All variables used should have meaningful names.

· The code should be formatted consistently, and in an easy to read format.

What to turn in:
· A single electronic folder (a directory). This folder should contain:

· The source code for the classes, plus your 'main' function
Remember that for each class, you should put it's declaration into the header (.h) file, and the implementation into the source code (.cpp) file. Each header file should contain at most one class declaration (the interface), and each source file should contain the implementation for at most 1 class.
In addition to the source files for you class implementations, you'll need a main.cpp file, which contains your main function, and any other functions you care to write.
I would prefer that you include the project files – stuff ending in .SLN and .VCPROJ, so I can build your project more easily.
· You have to name the folder with your last name, then first name, then the assignment number (both the major version – 4, and the minor (revision) number – 0). Example: "Panitz, Mike, A4.0"

· You should not include the Debug directory, or anything from it. I will dock you a couple points if you do. This directory is generated from your source, and usually about 10 MB for a trivial program. Also, you don't need to include your .NCB file, if it's present.

How to electronically submit your homework:

On the course homepage, there is a link to a document that describes how to use the SourceGear Vault system for handing in homework. That link is reproduced here:

http://freire.cascadia.ctc.edu/facultyweb/instructors/mpanitz/2005Fa/BIT142/Handouts/SCC-Handin/Source_Code_Control_Homework_Handin.doc
Follow the directions there to submit your homework.

Page 3/3
11/8/2005

