BIT 260 – Ultra Quick Intro to Visual Basic.Net
This document applies to Microsoft Windows XP (WinXP), and Microsoft Visual Studio.Net 2003 (“VS.Net”). It should also work for Microsoft Visual Studio.Net (the non-2003 version).

PART I: CREATE A SIMPLE PROGRAM IN VISUAL BASIC
Step 1: Start VS.Net
Start Microsoft Visual Studio.Net. It is located in the Start menu at

All Programs>Microsoft Visual Studio.Net>Microsoft Visual Studio.Net
We’ll be using Microsoft's Visual Basic (“VB”) language to develop desktop applications that this quarter. We’ll be doing that using Visual Studio, which is an integrated environment that allows you to edit, build and run VB programs. You’ll learn more about it as the quarter progresses.

Step 2: Create a VB Project
Create a new project. Select File>New>Project from the VS.Net menu bar. This brings up the New Project window that allows you to select from various items to create. In the Project Types window, you want to pick Visual Basic Projects (located at the top of the list) or Visual C# Projects, as appropriate.
Once you've done that, you want to make sure that the “Windows Application” option is selected in the Templates (for both VB and C#). You also must type in a project name and select the directory location where you want the project to be stored. Store the project in your student folder (H:\, if available) or on your own floppy disk. Click Ok and you'll go to the next step. The screen should look similar to:
[image: image1.png]
Step 3: Save!
You just created a .Net project. Projects store information about all of the files and options that are used to create a program. Files are typically VB/C# source files that have a .vb/.cs extension and contain executable statements, although there are other types. One of the nice things about Visual Studio is that it’s intended to be easy to use, so VS.Net created a starter file of source code for you to use (you can see a visual depiction of it on the screen ; on the right-hand side it should be listed as “Form1.vb”/"Form1.cs"). If you haven’t done so yet, make sure that you save your project. As a general rule:
Save Early, Save Often!

Step 4: Add A Button To The Form
At this point, we’re ready to go – we’re going to use the Visual Designer feature to quickly and easily create a simple, stand-alone application.

In order to do this, you need to show the “ToolBox”, which is usually docked on the left side of the screen. You can show it by moving your mouse over the area, VS.Net will slide the toolbox out.

[image: image2.png]
At this point, I’d recommend telling VS.Net that you want the Toolbox to stick around, by clicking on the thumbtack icon:

[image: image3.png]
In general, the way you’ll design the GUIs (Graphical User Interfaces) in VS.Net is to select items (called “controls”) from the toolbox, then use a click-and-drag action on the form to tell VS.Net where to put the thing. For now, select the “Button” option (within the Toolbox) by clicking on it once. Then click-and-hold in the picture of your program (the window with the “Form1” caption), and drag the mouse down & to the right. When you let go, VS.Net will draw a picture of the button on the form. Once you’ve done this step, it should look like the following picture:
[image: image4.png]
Step 5: Add Code To Respond To The Button Being Clicked
We could design a beautiful looking GUI by ‘drawing’ various controls onto the surface of the form, but these applications aren’t going to be useful if they don’t do anything. At the same time, if we have a menu (with 10 menu items), 3 buttons, and a bunch of TextBoxes on our form, it’s not clear what the user will do next. Indeed, two different users (or even the same user, on different occasions) might choose to do different things under the same circumstances. As a result, we need to instead write code that will be run when a certain event happens. For example, if the user clicks the button on our form, VB thinks of this as being an event, and will look for code that ‘handles the event’. Our event handler code can do almost anything we want it to.
When you double-click on the picture of the button (the one that’s on your form), you’ll be brought to the Code View of your form. Just to be helpful, it’ll even put your cursor at the start of the event handler, so you can begin typing immediately. You should type in the following (for both VB & C#)
 MessageBox.Show("You clicked the Button!", "Button1's event handler", MessageBoxButtons.OK, MessageBoxIcon.None)

Your screen should now look like (for VB:)
[image: image5.png]
For C#:
[image: image6.png]
Note that if you want to flip back and forth between the Design View and the Code View, you can either click on the Form1.vb[Design] tab (to get to the Design View, where you can draw controls onto the form), and the Form1.vb tab, or else use the Window menu. There are keyboard shortcuts listed on the Window menu, if you’re interested.

Step 9: Build The Program
From the Build menu, you should select the Build Solution menu item, which will attempt to compile everything in the project. At this point, you need to make sure that the program was properly built! If you have any compile-time (syntax) errors, they’ll show up at this point, and if they do, you need to fix them. You won’t be able to run the most recent version of your program if you don’t (but VS.Net will let you run the last version that compiled), so you want to get in the habit of making sure things are ok here before going on.
Step 10: Run The Program

You should try selecting Debug>Start, which will tell VS.Net to start the program. It’ll also switch ‘debugging mode’, so that if something goes wrong (for example, a run-time error), it’ll try and jump in and tell you what happened.
	In the foreground, you should see a real, live version of your program, which probably looks something like:

[image: image7.png]

	If you try clicking the button, you’ll see:

[image: image8.png]
which is exactly what we wanted.

You might want to try adjusting the message in the title bar and/or in the text area, as a means of familiarizing yourself with this further. Other ideas include creating multiple MessageBoxes per click (do they all appear at once, or one at a time? What does that tell you about how MessageBox.Show works?)

Page 1 of 5

