BIT 260
Lecture 2
Page 10 / 14

Lecture 2
Quiz: Show up, create a VB project, put a button on it, a textbox on it, and have the button (when clicked) echo back whatever’s in the textbox

Odds and Ends
· Visual Basic is NOT case-sensitive
C# IS case-sensitive

· VB: Line-break: If you want to put a single statement on multiple lines of code, Put the underscore character (_) right before the newline
C#: You just hit the Return key.

· To rename the form (within Visual Studio) – find the Name property, and change it (just like any other control)

· Make sure you’ve clicked on the FORM, and not any controls on it

· If VS.Net complains about “Couldn’t find Sub Main”, you need to reset the ‘startup object’ for the program

1. View(Solution Explorer
2. Right-Click on the project

3. Select Properties (not Startup Project – that’s different)

4. Under the General item, there should be a Startup Object
5. Set that to be your newly renamed form

· To rename the FILE (within Visual Studio) – go to the code window, and select File(Save As
· To change the caption for a Form: use it’s Text property

· VB: Option Strict On
(This’ll make sure that as many errors are caught ASAP(
For example, without it,

Dim b As Boolean = "True"
will work just fine. With it on, this’ll be flagged as an error

· Commenting:
Use a single quote ; everything else on the line turns green
i = 4 ' Assign 4 to i
<While the students are working on that, go around & collect the pre-class work, and post anything that they’ve brought in that’s electronic>

Brief Blurb:
”I don’t know when to use an if vs. a while” vs. “I’m getting syntax errors”

Next, have the students explain each of their areas to the rest of the class.
Lastly, have them work through the various ICEs, in order to practice with each structure(s)
New Topic: Properties

	Box #0: VB Data Types
Notice that useful ToString method hanging off it, to convert it to Text

· Boolean
 Dim b As Boolean = True

MessageBox.Show(b.ToString)

· Double
Decimal

double is 8 bytes (just like C), Decimal is 16

I’m not sure which is the ‘standard VB way’
· Integer

· String
Dim st As String = "bob"

· Char
Dim ch As Char = "a"c
NOT the same as a single-letter string!!

· Date

Dim dt As Date = #1/24/1976#
MessageBox.Show(dt.ToString())
Local Variables:

Dim i As Integer

Dim j As Integer = 3

Dim b As Boolean = True
Instance Variables:

OUTSIDE any methods, INSIDE the Public Class

Private m_iVar As Integer

Public m_deVar As Decimal
(Value Types vs. Reference Types(
Make sure to explain this

Value types – passed by value, get copied into the context (function, object)

Reference types – passed by reference, like all classes in Java, or stuff that’s passed using a reference parameter (or pointer) in C++

	VB Selection Structures: If, If…Else, Select Case
Multi-line (PREFERRED!)

If i > 4 Then

 MessageBox.Show("i is greater than 4, since it's " & i.ToString)

End If

· Note that End If DOES have a space between it

Single-line:

If i < 4 Then MessageBox.Show("i is less than 4, since it's " & i.ToString)
If..Else:

If i Mod 2 = 0 Then

MessageBox.Show("i is even, since it's " & i.ToString)

Else

MessageBox.Show("i is odd than 4, since it's " & i.ToString)

End If

Chained If…Else:

If i > 4 Then

MessageBox.Show("i is greater than 4, since it's " & i.ToString)

ElseIf i < 4 Then

MessageBox.Show("i is less than 4, since it's " & i.ToString)

Else

MessageBox.Show("i is 4, since it's " & i.ToString)

End If

· Note the ElseIf, which has no space between it

Select…Case: (kinda like Java/C++’s switch)
Unlike C++/Java, this is just a glorified if…else statement

Select Case i

Case 100

MessageBox.Show("Excellent job!")

Case 90 To 99

MessageBox.Show("good job!")

Case Is < 60

MessageBox.Show("you failed")

Case 61, 62, 63

MessageBox.Show("barely passing!")

Case Else

MessageBox.Show("not too shaby, not too great")

End Select

	VB Iterative Structures: While, For…Next
While
Dim i As Integer = Convert.ToInt32(txtInput.Text)

Dim s As String = ""

While i > 0

s = s & " " & i.ToString

i = i - 1

End While

MessageBox.Show("Final Answer: " & s)
For…Next
' counting up:
' Note that this INCLUDES both 0 and 10
Dim s As String = ""

For i = 0 To 10

s = s & " " & i.ToString

Next

MessageBox.Show("Final Answer: " & s)

' counting down

s = ""

For i = 10 To 0 Step -2

s = s & " " & i.ToString

Next

MessageBox.Show("Final Answer: " & s)

	VB Arrays
'Note that it's (), not Java's/C++'s []

Dim rgI As Integer()

' {} is the initializer list

' and is REQUIRED

' leaving it empty sets array elements to be

' the 'default value' - 0 for Integers

‘ NOTE that in VB, 4 actually means the highest valid index – thus there’s FIVE

‘ elements declared here:0, 1, 2, 3, 4
rgI = New Integer(4) {}

' The ‘VB’ way:
For i = 0 To rgI.GetUpperBound(0) ' GetUpperBound will return 4
Console.WriteLine(rgI(i))

Next

' The ‘Framework Class Library’ way:

‘ Since the For is inclusive, we need the - 1
For i = 0 To rgI.Length – 1 ' Length will return FIVE (5)
Console.WriteLine(rgI(i))

Next
· There’s also an Array class within the FCL, which has more method you can use.

	VB Subroutines
Private Sub MyMeth(ByVal x As Integer, ByVal y As Integer)

MessageBox.Show("x times y is: " & x * y)

End Sub
· Subs don’t return values

· Parameters

· Need a type

· ByVal vs. ByRef
· Exit Sub to leave early

· Can’t have Optional parameters (a VB6-ism), but you CAN have default values
Private Function MyMeth(ByVal x As Integer, ByVal y As Integer) As Integer

Return x * y

End Function

· Functions DO return values
· Return type listed AFTER parameter list – As Integer
· NEW for .Net – Return statement

· Old VB6 syntax: MyMeth = x * y

· Note that Functions can also use the Exit Function command - they’ll return the default value for the given type (for integers, this is 0)
Passing & Returning Arrays:
Private Function MyMeth2(ByRef rgI As Integer()) As Integer()

Dim i As Integer

For i = 0 To rgI.GetUpperBound(0)

rgI(i) = rgI(i) * 2

Next

End Function

	VB Classes

Adding a class
Within VS.Net:
View(Solution Explorer (if you can’t see it already)

Right-Click on the PROJECT or SOLUTION

· Won’t work if you click on another file

· Select Add(Add Class (at the very bottom)

· You’ll be asked to create a new class file – give it a name that matches the name of the class you’re storing in it.

From here:

· Add instance variables (make them private!)

· Add Subs/Functions

· Create an instance of the class in the form

· Use the thing as if it was a pre-packaged FCL class

Public Class _MyClass

 Private m_i As Integer

 Private m_msg As String = “” ‘ No string to start
 Public Function get5() As Integer

 Return m_i

 End Function

 Public Sub New()

 ' this is the constructor

 m_i = 5

 End Sub

 Public Sub New(msg as String)

 ' this is an overloaded constructor, that takes an argument
 m_msg = msg
 End Sub

End Class

	VB Operators

Action

Language element

Arithmetic

^, –, *, /, \, Mod, +, =
Assignment

=, ^=, *=, /=, \=, +=, -=, &=
Comparison

=, <>, <, >, <=, >=, Like, Is
Concatenation

&, +
Logical/bitwise operations

Not, And, Or, Xor, AndAlso, OrElse
Comparison & Objects (Reference Types)
Instances CAN’T be compared with =

· If you want to check that two object references refer to object that contain equivalent data, use object1.Equals(object2)
· If you want to check that two object references refer to THE SAME object, use
object1 Is object2

· (Note how this differs from Java, and is substantially safer than unintentionally comparing object references using ==)

	Box #0: C# Data Types
Notice that useful ToString method hanging off it, to convert it to Text

· Boolean
 boolean b = true;

MessageBox.Show(b.ToString());
· Double
Decimal

double is 8 bytes (just like C), Decimal is 16

The documentation specifies that decimals are better for monentary/financial calculations
· Integer

· String
string st = "bob";

· Char
char ch = 'a';
NOT the same as a single-letter string!!

· Date
(This isn't built into C# the way it's built into VB. It is still accessible, as part of the .Net FCL)
Local Variables:

int i;

int j = 3;
Instance Variables:

OUTSIDE any methods, INSIDE the Public Class

private int m_iVar;
public decimal m_deVar;
(Value Types vs. Reference Types(
Make sure to explain this

Value types – passed by value, get copied into the context (function, object)

Reference types – passed by reference, like all classes in Java, or stuff that’s passed using a reference parameter (or pointer) in C++

	Selection Structures: If, If…Else, Select Case
Multi-line (PREFERRED!)

if(i > 4)
 MessageBox.Show("i is greater than 4, since it's " & i.ToString)

NOTE: Optional { and } for a single-line if, like the above
If..Else:

If(i % 2 == 0)

MessageBox.Show("i is even, since it's " & i.ToString)

else

MessageBox.Show("i is odd than 4, since it's " & i.ToString)

Chained If…Else:

if(i > 4)
MessageBox.Show("i is greater than 4, since it's " & i.ToString)

else if (i < 4)
MessageBox.Show("i is less than 4, since it's " & i.ToString)

else
MessageBox.Show("i is 4, since it's " & i.ToString)

Select…Case: (kinda like Java/C++’s switch)

Can switch on integers or strings.

Can stack cases (1 & 2, below), but you MUST have a break at the end of each statement
You CAN'T fall through to the next statement – you can have a goto default, or goto case X
switch(txtInputA.Text)

{

case "1":

case "2":

MessageBox.Show("You typed 1 or 2!");

break;

case "3":

MessageBox.Show("You typed 3");

goto case "2";

case "4":

MessageBox.Show("You typed 4");

goto default;

default:

MessageBox.Show("You typed something goofy!");

break;

}

	Iterative Structures: While, For…Next
While
int i = 0;

string s = "Loop 1: ";

while(i < values[0])

{

s += i.ToString() + " " ;

i = i + 1;

}

s = s + "\n";

For
// counting up:
// Note that this INCLUDES 0 BUT NOT 10
s += "Loop 2: ";

for(i = 0 ; i < 10; i++)

{

s += i.ToString() + " ";

}

s = s + "\n";

// counting down:
s += "Loop 3: ";

for(int j = 10 ; j > 0; j-=2)

{

s += j.ToString() + " ";

}

s = s + "\n";

MessageBox.Show(s);

	Arrays
'Note that it's (), not Java's/C++'s []

Dim rgI As Integer()

' {} is the initializer list

' and is REQUIRED

' leaving it empty sets array elements to be

' the 'default value' - 0 for Integers

‘ NOTE that in VB, 4 actually means the highest valid index – thus there’s FIVE

‘ elements declared here:0, 1, 2, 3, 4

rgI = New Integer(4) {}

' The ‘VB’ way:
For i = 0 To rgI.GetUpperBound(0) ' GetUpperBound will return 4
Console.WriteLine(rgI(i))

Next

' The ‘Framework Class Library’ way:

‘ Since the For is inclusive, we need the - 1
For i = 0 To rgI.Length – 1 ' Length will return FIVE (5)
Console.WriteLine(rgI(i))

Next
· There’s also an Array class within the FCL, which has more method you can use.

	Subroutines
Private Sub MyMeth(ByVal x As Integer, ByVal y As Integer)

MessageBox.Show("x times y is: " & x * y)

End Sub
· Subs don’t return values

· Parameters

· Need a type

· ByVal vs. ByRef
· Exit Sub to leave early

· Can’t have Optional parameters (a VB6-ism), but you CAN have default values
Private Function MyMeth(ByVal x As Integer, ByVal y As Integer) As Integer

Return x * y

End Function

· Functions DO return values
· Return type listed AFTER parameter list – As Integer
· NEW for .Net – Return statement

· Old VB6 syntax: MyMeth = x * y

· Note that Functions can also use the Exit Function command - they’ll return the default value for the given type (for integers, this is 0)
Passing & Returning Arrays:
Private Function MyMeth2(ByRef rgI As Integer()) As Integer()

Dim i As Integer

For i = 0 To rgI.GetUpperBound(0)

rgI(i) = rgI(i) * 2

Next

End Function

	Classes

Adding a class
Within VS.Net:

View(Solution Explorer (if you can’t see it already)

Right-Click on the PROJECT or SOLUTION

· Won’t work if you click on another file

· Select Add(Add Class (at the very bottom)

· You’ll be asked to create a new class file – give it a name that matches the name of the class you’re storing in it.

From here:

· Add instance variables (make them private!)

· Add Subs/Functions

· Create an instance of the class in the form

· Use the thing as if it was a pre-packaged FCL class

Public Class _MyClass

 Private m_i As Integer

 Private m_msg As String = “” ‘ No string to start
 Public Function get5() As Integer

 Return m_i

 End Function

 Public Sub New()

 ' this is the constructor

 m_i = 5

 End Sub

 Public Sub New(msg as String)

 ' this is an overloaded constructor, that takes an argument
 m_msg = msg
 End Sub

End Class

	Operators

Action

Language element

Arithmetic

^, –, *, /, \, Mod, +, =
Assignment

=, ^=, *=, /=, \=, +=, -=, &=
Comparison

=, <>, <, >, <=, >=, Like, Is
Concatenation

&, +
Logical/bitwise operations

Not, And, Or, Xor, AndAlso, OrElse
Comparison & Objects (Reference Types)

Instances CAN’T be compared with =

· If you want to check that two object references refer to object that contain equivalent data, use object1.Equals(object2)
· If you want to check that two object references refer to THE SAME object, use
object1 Is object2

· (Note how this differs from Java, and is substantially safer than unintentionally comparing object references using ==)

Page 10 / 14

