BIT 260
Lecture 3
Page 6 / 6

Lecture 3
Quiz: Show up, create a VB project, put a button on it, a textbox on it, and have the button (when clicked) echo back whatever’s in the textbox

	How-To: Create Common Dialogs

Three-letter-prefix: dlg
1. These are all nonvisual controls – drag & drop from the Toolbox

2. In the code, before you use it: set any properties you want, to configure it

3. Run the dialog box, using ShowDialog.

It’ll return one of the DialogResult enumeration depending on what the user chose

Your code can react accordingly
 Dim res As DialogResult

 res = dlgColor.ShowDialog()

 If (res = DialogResult.OK) Then

 ' React to the dialog box here

 Else

 ' Use opted to cancel, etc

 End If

4. If the user chose ‘ok’, then there will be a property somewhere which can be used.

Common Dialog

Most Useful Property

ColorDialog

Color

FontDialog

Font

OpenFileDialog

Filename, Filenames

Set Multiselect to true if you want multiple file names

SaveFileDialog

Filename

These go into the component tray

A way to list controls associated with the form, that don’t have a GUI interface that’s always visible

(They still have properties, and can be selected

ICE: Create a font-picker (tied to a label), and an OpenFile w/ the multiselect on

	How-To: Create Custom Properties
Data fields are great, but they make it harder to ensure correctness of your program

People can modify your data
To create a property (in any class, including custom classes, and the form you start designing on)

Type “Public property MyNewProp As String”, then hit entry – VS.Net fills in the rest for you

Also explain attributes, and the significance of the Browsable attribute
 <System.ComponentModel.Browsable(True)> _

 Public Property MyNewProp() As String

 Get

 End Get

 Set(ByVal Value As String)

 End Set

 End Property

ICE: Create, use one of these

	How-To: Create Custom Dialogs

Three-letter-prefix: dlg

1. Create a new WinForm (View(Solution Explorer(Right-click to Add New Item(Windows Form)

2. Set the ‘dialog up’ as if it was a normal window
This means you can put any controls on the window that your normally could

3. Set the following properties on the dialog:

Property
Set To
Why?

ControlBox

False

This will disable the “system menu” on the top-left corner of the window. Also, that little “VB App” icon will go away

FormBorderStyle
FixedDialog
The border of the form now looks like a dialog
The form can no longer be re-sized
(The normal option is “Sizable” if you want to change it back)
ShowInTaskBar
False
Form won’t be displayed in Task bar
StartPosition
CenterParent
So it’ll show up in the right place
MaximizeBox

False

So the user can’t change the size

MinimizeBox

False

So the user can’t change the size

AcceptButton
btnOk
When the user hits the “Enter” key, btnOk will be (programmatically) pressed.
UNLESS the currently selected control (such as a multi-line text box) can grab the Enter key

Note: btnOk should match whatever you put on your form.

btnOk.DialogResult

OK

So when the user clicks on the button, the ShowDialog routine will know that the user has selected “Cancel”

CancelButton

btnCancel

When the user hits the “ESC” key, btnCancel will be (programmatically) pressed.

btnCancel.DialogResult

Cancel
So when the user clicks on the button, the ShowDialog routine will know that the user has selected “Cancel”

4. Create any properties on the DIALOG that you’d like
By doing this, you’ll be able to create a custom dialog box that behaves much like a common dialog

5. Run the dialog box, using ShowDialog.
Once the dialog has finished, collect up any Property(ies) that were set in the custom dialog’s “OK” event handler, and use them here.
 Dim dlg As CustomDialog = New CustomDialog

 If (dlg.ShowDialog() = DialogResult.OK) Then

 lblCurrentUserName.Text = "Current User: " & dlg.UsersName

 End If

	How-To: Create Main Menus
Three-letter-prefix: mnu

1. From the ToolBox, drag a “MainMenu” component onto the form.
Notice that the main menu itself isn’t visible, and so it goes into the Component Tray

2. Change the Name Property of the menu to be something like mnuMain

3. Right-click on the icon in the Component Tray, and select Edit Menu

4. ON THE FORM, the “Type Here” space will appear for the first menu
Click & type to fill it in (normally, this is the &File menu)
Make sure to mention to students that you can set up keyboard accelerators by putting an & before a letter.

5. On the “File” menu, set up “E&xit”
Note the submenu that appears

6. Next create “Open File”
Note that you can re-order menus with the mouse

7. Select the “Exit” item by single-clicking on it
Set the “Name” property to be mnuExit

8. Double-click on it to View Code for the default event: the Click event.
Private Sub mnuExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles mnuExit.Click

 Application.Exit()

End Sub
Notes:

· Most of what’s interesting here isn’t the menu itself, but wiring up the menu items to reasonable events.
· Interesting discussion topic: how to structure the code so that the same action can be started from multiple places (menu item, context-menu item, etc)

· Ideas: OOP – GUI just forwards events on to an abstraction layer. Diff. events (same object

· See if we can forward events from within the GUI itself (Button.PerformClick, etc)

	How-To: Create Context Menus
Three-letter-prefix: mnu

1. From the ToolBox, drag a “ComponentMenu” component onto the form.
Notice that the menu itself isn’t visible, and so it goes into the Component Tray

2. Rename it to be mnuContext

3. WITHIN THE CONTROL YOU WANT THE CONTEXT MENU TO APPEAR ON,
Set the ContextMenu property to be that context menu you just created.

4. Set the menu up as if it was a main menu.

	How-To: Create CheckBoxes, RadioButtons
Three-letter-prefix: CheckBox (chk ; RadioButton (rb
1. Create a GroupBox (or Panel – any container control)
Note that while putting CheckBoxes doesn’t really do anything, since they’re all independent of each other anyways.
However, by putting RadioButtons into a common container, WinForms will automatically ensure that one (and only one) radio button is selected at any given time.

2. Draw each one, and name each one appropriately

3. Once the user has clicked the button, go through each chk/rb, and figure out it’s state:

· For CheckBoxes, be aware that if ThreeState is true, then you need to use CheckState to differentiate between “checked” & “greyed-out”, should you so desire. Otherwise, just use the Checked Property

(You will first need to enable this behavior by setting the ThreeState Property in the Visual Designer.

Visually, the third state looks like it’s both checked and greyed-out)

· For RadioButtons, just use the Checked Property. Further, there can be only one, so once you’ve got it, don’t bother checking any others.

4) You can also automatically do this by using a loop to go through all the child control off the container control. Important points

a) make sure you check the type before casting it to a RadioButton (or that you handle the exception)

b) make sure you understand enumerators

c) the Tag property can be used to store any data you want

d) It might be nice to mention this to students, but going this route will easily consume most of a class
NOTE: The book has this goofy example the focuses on event handlers, rather than it’s more normal (in-dialog) use.

OBSERVATION: If you’re going to handle the CheckBox in it’s event handler, you probably don’t need to put it into a GroupBox.

	How-To: Create Tab Controls
Three-letter-prefix: Tab Control (tab ; Tab Page (tbp
1. Draw a Tab Control (found in the VisDesigner ToolBox) onto the form

2. Rename it to be tabDemo (or whatever)

3. Right-click on it, and select “Add Page”
Note that after this point, you need to carefully click on either the overall Tab Control, or else the “tab page” region in the middle

4. Rename it tbp1 (or whatever)

5. Right-click on and select “Add Page”

6. Rename it tbp2 (or whatever)
Notice that in order to navigate the various pages, you need to select the Tab Page region, then click on a tab (as if you were the user) in order to select a different tab.
The students make take some getting used to this.

7. At this point, you can now draw normal controls onto each individual page, and wire them up with event handlers

Page 6 / 6

