BIT 260
 In-Class Exercises
Lecture 1

WinForms
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

(It is assumed that prior to doing these exercises, you’ve done the “Visual Basic Intro”, or that you can use Visual Studio.Net to create Visual Basic projects)

	The gray boxes contain Visual Basic.Net specific material

	The yellow boxes contain C# specific material.

Part 1: Customizing A Control using Properties

Create a new Windows Application project (if you haven’t already), and put a Button on the form. When clicked, the Button should show a MessageBox with a quick, “Hello, World!” type message in it. (This is what the “Visual Basic Intro” covered ()

Next, make sure that you can see the “Properties” window, which will allow you to see a control’s properties, and change them. If you need to, use the “Properties Window” menu item (on the “View” menu – its shortcut key is “F4”) to display the Properties window. Next, you should single-click on the button in the middle of the form. Once you’ve done that, your IDE should resemble Figure 1, below:
[image: image1.png]
Figure 1
1. Renaming the Button

Using the Visual Studio GUI, you can change the name of the variable that refers to the button that you’ve put on the form. Note that this name is how you’ll refer to the button programmatically (i.e., in your Visual Basic/C# source code), and any similarities between it’s name and the text that the user sees on the button is coincidental.

You can change the name of the button by finding the name property in the Properties window, and changing it to something else. Notice that the name starts out as Button1. During this class, you should name all your controls with a three-letter prefix that indicates what type of control it is. For example, all buttons should start with “btn”, followed by something that tells you what the button does. In this case, btnHello would work well, but I’d encourage you to think of other names that would also work. Rename the button from Button1 to btnHello (or whatever else you chose).

Next, run the program. You’ll notice that everything continues to run, which implies that when we re-name stuff in the GUI, Visual Studio will do it’s best to update the corresponding code (the event handler) so that everything continues to work well. The question is: how?

If you examine the code, you’ll notice that we’ve still got a routine (a method, actually) named Button1_Click, so we can deduce that the name of the method isn’t what tells Visual Basic/C# to connect this method to the ‘click’. Moreover, having the button named one thing, and it’s event handler named something else, is kind of annoying (both in the sense of being aesthetically displeasing, and potentially confusing), so in the future, IT’S A GOOD IDEA TO RENAME YOUR CONTROLS FIRST, BEFORE YOU DO ANYTHING ELSE (like creating event handlers for them).

	VB: If you look to the far-right (this is probably off-screen), you’ll notice at the very end of the line that starts with Private Sub Button1_Click is something which says Handles btnHello.Click. A-Ha! This is what tells the Visual Basic program that the Button1_Click routine will be the event handler for btnHello ‘s Click event.

	C#: C# tells the button about it's event handler using a slightly different mechanism, which we'll see later.

To recap: you can change the name of a control using the Properties window. Each control should start with a three-letter prefix that identifies the TYPE of the control. Make sure you rename controls as soon as you’ve created them, rather than waiting till later (even though Visual Studio will try to update things so your program still works)

2. Changing the user-visible text on the Button

Using the Visual Studio GUI, you can change the text that is displayed on the button. To do this, select the button (in the Visual Designer), then find the text property in the Properties window, and change it from Button1 to something that will help the user more, such as Click Here To Get A Message! Notice that the text on the button started out the same as the name of the button – don’t get confused about the difference between the text and the name!

3. [image: image8.png]Experiment With Other Properties

There are too many properties to cover them all, one-by-one. When you consider how many different controls there are, the idea that this course (or any course) would cover them all is unrealistic.

Therefore, you’ll need to develop the skills needed to figure this sort of thing out on your own. In lecture, a number of sources for help was listed and/or brainstormed. For some of the more simple properties, you can sometimes guess/experiment with them directly, and figure out how to use them that way. It’s always a good idea to go back and read the documentation, though, just so that you’re aware of any “gotchyas” or potential trouble spots.

For right now, we’ll just experiment with a couple of (relatively) simple properties, and see what we can do.

You should start by first examining the various ways in which you can sort the properties: either alphabetically, or by category. As you can see in Figure 2, below, in the Properties window, immediately below the word Properties, is name of the control that is currently selected (in this case, btnHello).

Immediately below that are two buttons: the button that looks like [image: image2.bmp] is selected, meaning that the properties are sorted alphabetically. If you click the button to it’s left (the one that looks like [image: image3.bmp]), you can sort the Properties, grouped by category. Knowing what properties are all in the same category might help you figure out the purpose of a particular category (“Hmmmm… Dock is somehow related to Layout”), or at least give you a hint about where to start looking in the help files. Try switching back and forth between the Alphabetical and Categorical views just to get the practice.
On your own, or with a partner, try to figure out the following:

a) Change the font on the button
Any font you’d like is fine – try changing the text size, bold-face it, and/or a different font (maybe courier new?)

b) Change the alignment of the text on the button
Can you align it left center?

c) Try playing with Anchor and Dock
You’ll probably need to look this one up in order to fully understand all the details. As a hint, Anchor affects how the button behaves when the window is re-sized by the user, and Dock affects how much space it occupies.

d) Anything else?
Look through the other properties, and see if you can find any that do anything cool.
Part 2: New Control: Label

	
[image: image4.png]
	Try creating a label on your form. In the Toolbox (on the left-hand side of the window), the label is right under the Pointer (see picture at left).

Click the Label to select it, then draw it onto your form just like you did with the button. Rename the label to be lblExplanation (the three-letter prefix for Label is L-B-L, but all lowercase).

 Try to do the following:

a. Change the font on the label
Any font you’d like is fine – try changing the text size, bold-face it, and/or a different font (maybe courier new?)

b. Change the alignment of the text on the label
Can you align it in the middle?

c. Add an image
You’ll need to find an image to do this with – use the Cascadia logo (available on the Cascadia website) if you don’t have anything better.

An example of what the finished form might look like is given below, in Figure 3:

[image: image5.png]
Figure 3

Part 3: Changing the label when you click on the button

For this exercise, you should
experiment with a combination of code and design. The idea is that when one button is pushed, it will change the text of the label to something. If you click the second button, it will change the label’s text to something else.

I’d create a new project for this, just so you have a copy of your previous work.

Put two buttons on the form, and name them btnHello and btnGoodbye. Put a label on the form (named lblOutput), and set it’s starting text to be something like “Program Ready To Go!”. For the event handler for the btnHello button, you should add code like the following:
	Private Sub btnHello_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnHello.Click

 lblOutput.Text = "HellO!"

End Sub

	private void button1_Click(object sender, System.EventArgs e)

{

lblDisplay.Text = "Hello!";

}

(Note that you only have to type in the bold-faced, larger stuff – the method start/end lines are provided for you by Visual Studio.)

Notice that once you’ve typed in the name of the label, Visual Studio will recognize that, and suggest various properties that you might want to use (see picture below, in Figure 4). Notice also that the name that we use while programming (Text), is the same as the one used by the Visual Designer. This makes sense, given what we saw about the automatically generated code.
[image: image6.png]
Figure 4: Drop-Down box that Suggests Properties

This format should be familiar from other classes – first we name the object (lblOutput), then use a dot/period to separate the object from the property or method, then name the property/method, so we get lblOutput.Text as the full name of the text part of the label. We use the single equals sign to mean “assignment”, and we surround the String in double quotes. Notice that Visual Basic, UNLIKE Java or C++, doesn’t require that each line end in a semi-colon.

Next, set up the second button so that when clicked, you’ll change the label’s text to “Goodbye”

Make sure that this runs, and you understand everything.

As an additional challenge, can you figure out how to add a third button (btnMessage), so that when the user clicks on it, a MessageBox containing the label’s current text is displayed?
Part 4: New Control: TextBox

Next, create another new project, and draw a button, and a TextBox onto it. (Again, the TextBox control is found in the ToolBox – see Figure 5). TextBoxes should be named using the three-letter prefix txt. In this case, txtUserInput.

First, try playing with the various fields using the Visual Designer – can you change the font? Can you set the Text that is displayed?

[image: image7.png]
Figure 5: Where To Find The TextBox

Next, given what you know about programmatically setting the Text of a Label, and since you’ve found the name of the text that is displayed in the TextBox, try creating a button that will set the text of a label to whatever the user has typed into the textbox. Hint: In English, you want to assign the TextBox’s text property to the label’s text property.
Part 4: Converting from Text To A Number

When the user enters data (either through a TextBox, or through some other means), the program will usually receive that data in form of text (normally called a String, since it’s a string of individual characters. This is ok, except that we’ll often want to deal with data in terms of numbers, currency, or dates (just to name a couple of other formats). While Visual Basic knows how to add numbers, it doesn’t know how to add text.

So our job is to convert that text to a number, then do mathematical operations on it. If you obtain the sample project (from the website – it’s in a .ZIP file named SimpleConvert.ZIP – you should download, then unzip the project), you’ll see that it consists of a GUI that looks like the following:

The event handler for that single button has the following code:

	1. Dim num As Double

2. num = System.Convert.ToDouble(txtUserInput.Text)

3. num = num * 3

4. MessageBox.Show("Thrice what you typed:" & num)

	3. Double num;

4. num = System.Convert.ToDouble(txtUserInput.Text);

5. num = num * 3;

6. MessageBox.Show("You typed: " + num);

Notice that on line 1, we create a variable, using Visual Basic syntax. Dim stands for DIMension, which had significance in previous versions of Basic. As Double means that we want the variable to be a Double, meaning that it can hold decimal values. If we use C#, then the code looks almost identical to C++ (or C, or Java, etc) syntax.
Line 2 is the interesting one – we’re using the ToDouble method, which is a static (in Visual Basic parlance, Shared) method on the Convert class. Notice that the Convert class is a member of the System namespace. If you look up this class in the online help, you’ll notice that there’s a bunch of similar methods (for example, ToInt32, to convert from text to an Int32).
Line 3 does some simple math – in this case, tripling whatever the user typed. Clearly, we could do more complicated math, such as calculating sales tax on the price the user typed in, but that’s left as an exercise to the reader. (
Line 4 displays the result, using a MessageBox. Notice that the concatenation operator, &, is used to glue stuff together. In C#, the concatenation operator is the plus sign, just like in Java.
Try modifying this so that it prints out 1.5 times what the user typed in. Also, try running the program, and giving it non-numeric input (like your name, instead of a number).
Part 5: “Graphics” class: Drawing on a control

Let’s say that you’d like to draw something more involved than just straight-up, normal, form elements. We can do this using the Graphics object that most controls expose (in programming, the term expose usually means “allow you to use”).

Create a new project, and put a big label on the form. Remove any Text from that label, so that we can use that label control as a blank canvas to draw on. While you can use the form itself to draw on, I prefer to use a control, so that I can move the picture around without having to adjust my code. Also add a button, and set it’s caption to be something like “Click Here To Draw A Picture”. Give them both reasonable names.

In order to draw on the Label, we’ll first have to obtain a Graphics object from it. Within the event handler for the button, start with the following code:
	1. Dim gphx As Graphics

2. gphx = lblDrawing.CreateGraphics()

	1. Graphics gphx;

2. gphx = lblDrawing.CreateGraphics();

On line 1, we’ll create a variable that can refer to a Graphics object. On line 2, we’ll get the Graphics object from the label. Note that if you named your label differently, you’ll need to change lblDrawing.

Next, we’re going to start by drawing a line. We’ll need to tell it what type of line to draw (in this case, a solid line w/o arrows at either end is fine – we’ll use black as the color). We also need to tell it where to start, remembering that x increases from left to right, and y increases from top to bottom. So we’ll end up with:
	1. Dim gphx As Graphics

2. gphx = lblDrawing.CreateGraphics()

3. gphx.DrawLine(System.Drawing.Pens.Black, 10, 10, 40, 100)

	1. Graphics gphx;

2. gphx = lblDrawing.CreateGraphics();

3. gphx.DrawLine(System.Drawing.Pens.Black, 10, 10, 40, 100);

Try doing this with different colored pens (look these up in the online help). Try also using other methods, in particular, try the DrawString method, which can be used to draw text onto the form.

An example of the DrawString command is:

	1. Dim gphx As Graphics

2. gphx = lblDrawing.CreateGraphics()

3. Dim fnt As Font = New Font("Arial", 20)

4. Dim bsh As Brush = New SolidBrush(Color.BlanchedAlmond)

5. gphx.DrawString("Hello!", fnt, bsh, 30, 10)

	1. Graphics gphx;

2. gphx = lblDrawing.CreateGraphics();

3. Font fnt = New Font("Arial", 20);

4. Brush bsh = New SolidBrush(Color.BlanchedAlmond);
5. gphx.DrawString("Hello!", fnt, bsh, 30, 10)

 The key points are that we first make a Font (so .Net knows HOW to draw the string), then a Brush (so it knows what color to use – using the System.Color class), and finally we tell it the string, Font, Brush, and (x,y) coordinate of the top-left corner.
More Exercises:

· Try drawing numbers (1, 2, 3, etc) on the form. Can you use a loop to do this, rather than having to actually say, in code, "Draw 1, Draw 2, draw 3, etc"?
· Put two Textboxes on the form, and label one "Low", and the other "High", and a button. When you click on the button, draw all numbers between those two on the form.
��Figure 2

© 2002, Mike Panitz, ® 2002, Mike Panitz

