BIT 260
Lecture 15
Page 1 / 3

Lecture 15
	XML Basics
Data stored in human-readable text-files, with human-readable metadata.
Data is surrounded by tags (like in html) – open tag, close tag pattern

If you define a new type of XML doc, then you get to create (name) the tags

Tag names follow standard variable name requirements – start w/ letter or underscore, contains letters, numbers, underscore, and NO INTERNAL WHITESPACE

Element:
 tag, plus data inside.

Can be nested, but not overlap

Every XML doc has a SINGLE root element

Attribute:
additional info about an element

Written into the opening tag

XML declaration:
at start of file, to identify the file as being XML

<?xml version="1.0" encoding="UTF-8"?>

Comment:

 <!-- comment goes here -->
Namespaces:

Purpose: Just like in .Net, these serve to reduce naming collisions

They pre-define tags that you can use, so you don't have to re-define them every single document.

<not in book>

Two basic approaches to dealing with XML:

"DOM model" - http://www.w3schools.com/dom/dom_intro.asp
Load everything into memory, then manipulate the tree

Requires enough memory to load the entire file (plus overhead of keeping XML structure)

Easier to modify in a random-access fashion

"SAX model" - http://www.saxproject.org/?selected=history1
Technically, this is Java-only

However, it's used in parts of MS, as well ("forward-only, read-only")

Better for huge data sets, or loading data into another data format (i.e., into a native DB)

	XML in .Net
Basic model:

1. Open the (text) file (using the XmlTextReader)

· Set WhitespaceHandling to be WhitespaceHandling.None, so that the reader doesn't create nodes to represent blank space

2. Load the file into an XmlDocument

· Use the Load method

· Then call Close on the XmlTextReader

3. The XmlDocument.DocumentElement gets you the root element
4. Everything is modeled with XmlNodes – elements, attributes, comments, etc
· For a given node:

· Name / Value

· NodeType tells you what it is.

· The Attributes collection gets you the attributes (XmlNamedNodeMap can be used as a collection that you can use the for each structure to iterate over)

· FirstChild gets you the first child of this node (different from the attributes of the node). You can then use that node's NextSibling method to move a cursor through the child nodes.

· Note that the Document node type will have the XML declaration as a child node, so you can get info about the document's encoding.
· Some node types:

· Attribute

· Element

· Comment

· CDATA – data that's "raw"

· XmlDeclaration – this is only found on the root node

5. If you want to write out an XML tree, use the XmlTextWriter
· XmlDocument.WriteTo(XmlTextWriter)

· Close the 'writer (might want to Flush it, too – a code sample in the book does this, but it's not clear why)

	XML as a DataSet

The XmlDataDocument is a subclass of XmlDocument, and is used to view the Xml in a relational format
(via data binding)

Remember that you need to set up the schema BEFORE calling load

1. Create the XmlTextReader on the file you want to open

2. Create the XmlDataDocument
3. Get the XmlDataDocument.DataSet property

4. Tell the DataSet to ReadSchema, and hand it the XmlTextReader

a. Alternately, you could have gone into the DataSet, and created the columns by hand

5. Close & re-open the XmlTextReader

a. Since it's forward-only, read-only, it needs to be 'reset'

6. Set XmlTextReader.WhitespaceHandling to be None (no nodes for whitespace)

7. Load the XmlTextReader into the XmlDataDocument, like normal

a. With data binding, this'll update the DataSet, as well

8. Close the 'Reader.

9. The DataSet has now been both loaded with the correct schema (so it knows what to display), and with data. You can now connect it to UI elements (like the DataGrid)

Note: this utilizes 2-way data binding, so you can update the stuff in the GUI, then use the XmlTextWriter to output the changed XML document.

Page 1 / 3

