BIT 260
Lecture 4
Page 4 / 4

Lecture 4
Quiz: Show up, create a VB project, list 2 separate controls, and give an example of how you might use each one.
There are ZIP'd up projects (all located in one, convenient solution) on the website - walk the students through getting & unpacking this.
· Don't forget to Set the StartUp Project within the solution
	Exception Handling
Note that all the demos are delivered in a single Solution, comprised of multiple sub-Projects. It would be good to first explain how this works out.
In order to run a particular project, you’ll need to right-click on that project, and select “Set As StartUp Project”
· Demo 1: 1-BasicExceptionHandling
Ultra-basic, essentially a fancy version of "if it failed"
Make sure to point out the basic idea - something weird happens, and the CLR/code generates an exception. Note that you shouldn’t use this to handle expected errors (such as reaching the end of a file that you’re reading)

Your code then handles that exception at some level.

1. Once the exception fires, the nearest enclosing Try block is checked for Catch handlers (or, if no catch handlers, then a Finally clause).

2. If there’s more than one catch, they’re checked for a match, FROM TOP TO BOTTOM, until one matches the exception being thrown (including the situation where the Catch handles a base class of the exception that’s being thrown).

3. Thus, you want to arrange your Catch statements from most specific to least specific.
ApplicaitonException: CLS-required based class for all exceptions non-CLR code throws
SystemException: if the CLR itself needs to throw an exception, it’ll derive from this
Note: this has parallels with the Exception/Error dichotomy of Java, but isn’t as stupid (everything derives from Exception)

4. ONLY ONE Catch statement will be executed.
The Exception’s Message property is extremely useful in giving useful feedback to the user.

	· Demo 2: 2-ExceptionHandling-Finally
Generic Catch, plus Finally
Your code then handles that exception at some level.

1. The ultra-generic Catch statement can also handle exceptions that aren’t derived from Exception
You should never derive custom exceptions from anything else – it’s there for legacy C++ support.
You can see this work when you remove the catch handler for something else that will fire.

2. Finally clauses are useful if you want to execute code regardless of how the Try block is exited – it’ll run regardless of whether an exception is thrown (whether your Try catches/handles it or not), or not.

	· Demo 3: 3-CustomExceptions
This contains four separate buttons

1. The button captioned Throw FCL Exception demonstrates how to throw a Framework Class Library exception
It creates the exception on multiple lines, using a local variable.

2. The button captioned Throw FCL Exception (From Sub) demonstrates how that unhandled exceptions from a Sub can be handled at a higher level.
It instantiates the new exception in a single line, which is lots more convenient

3. The button captioned Throw Custom Exception demonstrates how to throw an Exception class that you created.
Not surprisingly, it’s just about identical to the standard stuff – the interesting stuff is in the new Exception class.
Note: .Net naming convention is that new exception classes’ names end in Exception.

4. The button captioned Click Here To Convert To Integer demonstrates a more ‘typical’ use of this.
Notice how the exception itself might throw an exception, if it’s Properties are used improperly.

	User Input Validation
'Garbage in, garbage out'
While we can never allow ourselves to write sloppy (internal, nonGUI) code, we can make it easier to ensure the program's correctness by preventing the user from entering bad data at the GUI layer

· Unlike HTML, since the application is monolithic, we don't then have to re-validate it in the application logic

· Instead, we could use things like the Debug.Assert mechanism to help us catch bugs.

	Strategy: Setup the GUI so the user CAN'T enter bad data

Example: A student can register for fall, winter, spring, summer, or continuous enrollment (with some start date)

If you use radio buttons, you can make sure that one (and only 1) of those 5 values are selected.
Further, if the user needs to enter a date (for continuous enrollment), use a Calendar (or DateTimePicker) to ensure that stuff is in the right format.

Also, use the Enable property on the calendar to disable it UNLESS the user picks Continuous

	Strategy: Validate Keystroke – by – Keystroke, preventing the user from entering the wrong data type

Example: The "Zip Code" field can only have numbers, and the dash sign. By handling certain key-pushing events, we can prevent the user from entering other information

The following events will happen, in the following order:

1. KeyDown
PRO: You'll see all keystrokes, including stuff like the Shift/Alt keys
CON: 'Raw' key data – you're given a number that corresponds to the key (rather than a character).

2. KeyPress
PRO: You'll be able to deal with keys as Char(acters), which is much easier than keycodes.
CON: Many keys aren't reported, although you can figure out if the Shift, etc, keys are down

If you want to prevent the character from being entered into the control (for example, prevent it from being typed into a TextBox), set the Cancel property on the CancelEventArgs to be True.

3. KeyUp
PRO/CON: like KeyDown
Sample #1: The first project in the demo file illustrates what events happen in what order

Sample #2: prevent non-letter characters from being entered into the Textbox

	Strategy: Validate the entire field, Ensuring that the user can't enter bogus values

Example: Once the user has finished entering data into a field (this intention is signaled by the user leaving the control), we could check to make sure that a price is a valid Decimal number.

We'll handle the Validating event, and in there, figure out if the data is valid.

If not, we'll have to signal this to the user (somehow)

· For this class, stick with the System.Convert & exception handling

· Mention that the .Net framework has support for regular expressions, which is the Way To Go if you're looking to do serious validation (e.g. make sure that the phone number looks like (xyz) abc-defg")

Sample #3: catch mis-typed numbers

	Strategy: When Validating Data, Don't irritate the user

When you use a messagebox to report errors, you'll not only irritate many users, scare other users (particularly if there's lots of fields to validate), but you might confuse them since the error message disappears quickly.

(One Possible) Solution: Use the ErrorProvider control to display an error message.
In the Validating event, if something goes wrong, call the two methods to attach the errorProvider to the relevant control.
If things go ok, set the error message to be blank to 'clear' the error.

Example:

 Try

 theInteger = System.Convert.ToInt32(txtInteger.Text)

 erpInteger.SetError(txtInteger, "") ' elimintate any previous

 ' error messages

 setupOutput()

 Catch ex As Exception

 ' something went wrong - tell the user!

 erpInteger.SetError(txtInteger, "You need to type in an integer")

 erpInteger.SetIconAlignment(txtInteger, ErrorIconAlignment.MiddleRight)

 End Try
Sample #5: Nonirritating feedback to the user

Page 4 / 4

