BIT 260
 In-Class Exercises
Lecture 2

Visual Basic/C# Syntax ; More Controls
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

Part 1: Odds and Ends
Create a new project, and save it somewhere (remember, save early, save often!), then make sure to go through the following steps:

1. Rename the Form, And File
 The first thing you should do is rename the form to be frmIfPractice (the three letter prefix for a Form is frm). You should also rename the file that the code is stored in to be frmIfPractice.cs.
2. Change the Titlebar’s Caption
You should also use the Text property of the form itself to change the caption in the titlebar to be “Practice With “If” ”, or something similar.

3. Option Strict (VB only)
Add the following words to the top of this file (and to each and every new file you create in this course)

Option Strict On

Option Strict will help you catch errors by being very strict about the rules of the VB language. You are required to put this into every file that you hand in for homework.

4. Comments
Try to put some comments into the file, just to make sure that you can.

	VB:
Remember that they last for a single line, and start with a single quote:
i = 4 ' Assign 4 to i Notice how the comment is in green
i = 5

	C#:
Remember that a single line comment starts with a double forward-slash:
i = 4; // Assign 4 to i Notice how the comment is in green
i = 5;

A multi-line comment starts with /*, and continues until the /:
i = 4; /* Assign 4 to i Notice how the comment is in green
i = 5; Comment continues onto this line. */

Part 2: Overview of Language Features

You should take a couple of minutes to make sure that you and your partner are ready to explain some aspect of the Visual Basic/C# core language, as specified in the PreClass Worksheet for this lecture. Once everyone’s ready to go, students will take turns explaining some aspect of the language, and present whatever sample code they’ve found.

Part 3: Practice Problems

You should pick from the following list of practice problems what (and however many) problems you feel you need to do, in order to get a reasonable grasp of the various language features that VB/C# provides. For now, I’d focus on covering as many topics as possible (so you know where you’re strong, and don’t have focus as much, and where you’re weak, and need to spend more energy), even if it means producing unpolished solutions to some of the problems.

	Problem A:

Write a program to compute the sum, and average, of a sequence of numbers that the user will enter using InputBoxes.

An InputBox is something that was originally used in Visual Basic 6, but is still available in VB.Net/C#. It will present a simple dialog box to the user, and ask the user to type in some text. The only complication is that it’ll give us back a String (not a number), so we’ll have to convert it. The following code illustrates it’s use:

Dim myValue As String

' "Type an integer" appear in the 'box

' "Getting Input" is in the titlebar

' "-1" is the default string

' 100, 100 are the x, y values of the upper-left corner

myValue = InputBox("Type an integer!", "Getting Input", "-1", 100, 100)

Dim num As Integer = Convert.ToInt32(myValue)

MessageBox.Show("Num is: " & num & " Twice num is: " & num * 2)
The program should operates as follows: When started, the user is presented with a form that has a TextBox, named txtNumInputs, and a Button, named btnCompute. txtNumInputs should be clearly labeled (by putting a Label next to it) so as to convey that the user can choose the number of inputs using it. Once the user has entered the number of numbers that the user wishes to sum/average, the user will clicks on btnCompute.

At that point, the program will prompt the user to enter a bunch of integers , using an InputBox to get each number. Clearly, since you're only allowed to get one number per InputBox, you'll have to repeatedly ask the user for numbers using the InputBox command.

Next display the sum, and the average of the numbers by setting the Text property of a Label, or else drawing them onto something (like a Label) using a Graphics object.

PRACTICE IDEAS:

· Make sure that you’re comfortable doing this with a While loop, and a For…Next loop.

· You also might want to put this into a Sub or Function that the Button’s event handler calls.

· You also might try experimenting with arrays, so that you can keep track everything the user typed.

	Problem B: Calculating a Letter Grade, From A Number Grade

Create a TextBox (with an appropriate name), and Label is as “Number Grade”. Create a Label (named lblOutput) that is initially blank, but you will use to tell the user what letter grade they’ve gotten. Put a Button onto the form, and make it clear that clicking the button will convert from a number to a letter grade.

Given a numeric grade between 0 & 100 (inclusive), translate the grade into a letter, where

90 < grade <= 100
Is an “A”

80 < grade <= 90
Is a “B”

70 < grade <= 80
Is a “C”

60 < grade <= 70
Is a “D”

0 <= grade <= 60
Is an “F”
Less than 0, or more than 100 should generate an error message

PRACTICE IDEAS:

· Make sure that you’re comfortable doing this using If, If…Else, and Select…Case

· You also might want to put this into a Sub or Function that the Button’s event handler calls.

· Try creating a new class, and within that class, creating a Function that will translate from number to letter grade

	Problem C: Guessing Game
(This problem is more involved, and might not be something you can finish in this one class)

Your objective is to write a guessing game, which will work like this: The user (the player) will push a button and begin the game. The program will pick a number between 0 and 100, and ask the player to guess what the number is, using an InputBox. (See Problem A for a description of what an InputBox is) The player has, say, 10 guesses to pick the correct number, and if the number isn't chosen by that time, then the program will simply tell the player what the number is, and end the game. If the user guesses the right number before then, the game will end early, with the program congratulating the player on successfully guessing the number.

 Further, the program will offer the following advice to the player: if a player's guess is higher than the target number, the program will tell the player that (s)he guessed too high. Similarly if the player guess too low. Additionally, if the player's guess is 10 of the program's number, the program will tell the player that the guess is close.

For example, if the computer's number is 31, and the player guesses 71, the program will respond with "Too high – what's your next guess?". If the player then guesses 22, the program will respond with "Too low, but close – what's your next guess?"

Again you'll notice that this is a fairly complex problem. The first part is figuring out how to get the program to ask the user for a bunch of numbers, and stop if the player guesses the correct number. The next step is to figure out how to stop if the player has guessed the correct number, or the limit on the number of guesses has been reached.

Once you've gotten that done, you've got a choice: you can either figure out how to print the "Too high" message, the "Too low" message, or the "close" message. You can do these in any order, since they don't really depend on each other in any way.

VB:

Hint: In Visual Basic, you can concatenate (join together two strings) using the & operator. The following will create a single String with "Hello World" in it:

Dim s as String = "Hello" & " " & "World"

You might want to use this to compose the messages that you'll put in your InputBoxes.
C#:

Hint: In C#, you can concatenate (join together two strings) using the + operator. The following will create a single String with "Hello World" in it:

String s = "Hello" + " " + "World";

You might want to use this to compose the messages that you'll put in your InputBoxes.
· This application should provide opportunities to use everything we’ve examined so far.

© 2002, Mike Panitz, ® 2002, Mike Panitz

