BIT 260
Lecture 10
Page 3 / 4

Lecture 10
	SQL DB access : how to run test queries, then some info on various types of queries,
How to run test queries
It's good to isolate those parts of the program that might need work & individual attention
Esp. when you're first learning SQL, it's nice to be able to run the query, check it's results, then paste it into your code.

VS.Net IDE:

Under Server Explorer, open up a DB, then right-click & Add New View.

Osql:

Command-line utility that ships as part of SQL Server MSDE

Query Analyzer:

Tool that ships as part of SQL Server

Pretty darn cool – you can browse the server, run queries on various DBs, even ask it to do things like "Copy a generic 'select' query onto the keyboard for this table", etc

Query(Execute (also, the green button on the toolbar) to actually run the query.

Make Your Own Query Runner:

Write up a quick C# app w/ DataGrid, Textbox, Button, then drag-and-drop the table from Server Explorer onto the form to get the connection/data adapter

1. Tell the SqlConnection to CreateCommand, which gives us the command object

2. Set the command to be text, and copy the txt.Text into command.CommandText

3. Set the data adapter's SelectCommand to be the SqlCommand we just created

4. Use the d.a. to fill a dataset

5. Attach the dataset to the datagrid

Crud, but it works

	SQL: Select
Clauses in a typical select statement:

SELECT
FROM

WHERE

GROUP BY
HAVING
ORDER BY

SELECT, FROM clauses not optional ; everything else is

Order of the clauses isn't optional
In order to put this into C#, we end up creating the SqlCommand, assigning it to the data adapter's SelectCommand property, then telling the adapter to fill a dataset based on this.

	SELECT:

Used to pick out column names

You can also rename the column names

You can do calculations (and rename them)

This includes calling functions

You may need to fully-qualify the name of a column, if you've got multiple tables joined together, and both tables have columns with the same name
Can also do SELECT DISTINCT, which eliminates duplicates amongst rows

	FROM:

Table(s) you want to pull data from

Comma-separated list ends up producing a set of rows, such that each row in the first table is matched with every row in the second

This'll produce huge numbers of records, and usually isn't what you want

Use the INNER JOIN keyword to join all the rows of two tables, such that a column in one table matches a column in the other table

	WHERE:

This will filter out rows BEFORE they're included in any joins, or other operations

In contrast to the HAVING clause, which filters stuff out afterwards

Can be an exact match, a comparison, and have multiple tests joined by logical operators

Can also use primitive RegExps (using the LIKE operator)

%
= any char, 0+ times

_
= any char, exactly once

[abc]
= any char in the set, exactly once

[^abc]
 = any char NOT in the set, exactly once

	GROUP BY:

This will allow you to formulate aggregate queries

Instead of "show me ALL the rows", "show me a count of how many rows satisfy X"

If you use this, then your SELECT clause can only contain columns listed here in the group by, or aggregate functions
Count

Sum

Avg

Min

Max

Can group by multiple groups – in which case, a bucket will be created for each combination

	HAVING:

Filters stuff out after everything's been done ; thus is useful for filtering aggregate queries based on aggregated results

	ORDER BY:

One or more columns, each can be marked as ascending (ASC) or descending (DESC)

	SQL: Insert

Allows you to add a brand new row of data to the table

INSERT INTO Table_Name (col1, col2, …, colN)

VALUES (val1, val2, … valN)

Val1 is used as the value of col1 in a new row in the table

Omitted columns must either have a default value, be an identity field, or allow null values

Can also do the following, if you want to copy data from one table to another
INSERT INTO Table_Name (col1, col2, …, colN)

SELECT col1Source, col2Source, …, colNSource

FROM

In order to put this into C#, we end up creating the SqlCommand, assigning it to the data adapter's InsertCommand property, then telling the adapter to run it's ExecuteNonQuery method.

Note that you'll have to tell the connection to Open before, and Close afterwards

Note that the SqlCommand has the Connection property which can be used to do this.

	SQL: Update

UPDATE TableName
SET col1 = val1, col2 = val2

WHERE colX <comparison> valX

SET

Can set a column (or columns) to be a literal value

Can set a column (or columns) to be the result of an expression

If there's no WHERE clause, then every row in the table will be updated

Can also put the results of a nested query here (like an inner join)

WHERE

Pretty much like in the select query

	SQL: Delete

Looks like a select, except that instead of the SELECT columns, you simply have delete
Can do bulk-deletes, but can't do deletes on aggregate results (no GROUP BY / HAVING clauses)

	SQL: Stored Procedures

Almost exactly like normal queries, except they're stored on the server, can be parameterized, and run faster (they're compiled)

Create them using Enterprise Manager / SQL Query Analyzer

"CREATE PROCEDURE procName <param. list> AS <normal SQL query>"

In order to call it, you go through the same run-around as for an ad-hoc, except that the SqlCommand's CommandType should be set to StoredProcedure, and the CommandText is the name of the proc.

If the proc is parameterized, you need to call the SqlCommand.Parameters.Add to add SqlParameters to the query. Each param needs the name (including the "@"), and the type. You then set the value using SqlCommand.Parameters["@paramName"].Value = <blah>

You can also set the in/out-ness using SqlCommand.Parameters["@paramName"].Direction
Keep in mind that you'll need to Open the connection, and close it again afterwards

Also, you run the query using the SqlCommand's ExecuteNonQuery method

You can then get the values of out parameters from the SqlCommand.Parameters["@name"].Value again

Page 3 / 4

