BIT 260
 In-Class Exercises
Lecture 4

Exception Handling & User Input Validation
Note: Please keep the programs that you create today, in case you have a dispute about your grades for the ICEs at the end of the quarter

“Optional” exercises don’t need to be done if you’re making up this work (i.e., you missed class, and you’re doing the work on your own)

Part 1: Exception Handling: Handling Standard Exceptions

Earlier, we saw the method System.Convert.ToInt32, which is given a String, and returns an integer. If that String contains a properly formatted number, then everything goes smoothly. But what if the String is obtained from the user, who chooses to type in, say, their name? In that case, it'll throw an exception – in this case, a FormatException.

Create a small application that will ask the user for a number, and then (inside a Try block), try to convert the string into an integer. Make sure to catch the FormatException, and give the user an error message telling them that whatever they typed isn't a valid number. You may want to put all that in a loop, so that your program will repeatedly pester the user for a valid number, until the user gives in and provides a valid number.

Once you've got the number, you should print out (using a Label, or MessageBox, or whatever) twice that number, half that number, and 10 more than that number. Since the focus of these exercises is for you to learn exception handling, rather than the application's logic, don't worry about exactly what the application should accomplish. For this part, just focus on the basics of catching an exception.

Part 1: Exception Handling: Throwing an FCL Exception

For this part, you should focus on catching an exception object that you threw.

Taking the code from part 1, you should improve it as follows: if the user provides a valid number, but that number is less than 0, then you should throw a generic Exception, with the message "I'm sorry, but you're not allowed to choose a negative number. Please type in a number that's at least 0". You should add a catch block (a.k.a., an exception handler) after the FormatException, so that your program will catch this Exception, and give appropriate feedback in either case.

Part 1: Exception Handling: Defining your own Exception class

For this part, you should focus on realizing that all exception objects are, fundamentally, just objects. They have a class which defines them, can have methods, fields, etc.

Let's say that in addition to the above rules, your program doesn't work well with, say, prime numbers. But only small prime numbers. So if the user types in 2, 3, 5, 7, or 11, you want to throw an exception that reflects that particular, exceptional situation. You decide not to use the a generic Exception because you want your exception handler to do something more specific than for the generic Exception case.

Instead, you should create a new class, named SmallPrimeNumbersAreBad, which extends (inherits from) ApplicationException. You should make sure to provide both a default constructor, and a constructor that takes (as it's single parameter) a String. In addition to those 2, you should add enough code so that the exception object can remember exactly which small prime number you chose. This should include an integer field to remember the value, and a third constructor which takes 2 arguments: a String (a message describing what went wrong), and the number to remember. For the other two constructors, the object should remember the value "0". Lastly, you should add a property, such as TheBadNumber, which returns the number which is being stored.

Back in your program, if the user passes in a number, and it's not negative, but it is one of the small primes ones listed above, your code should throw this new type of exception. Make sure to test all three constructors.

Part 1: Exception Handling: Throws Exceptions from Methods

For this part of the ICEs, you should focus on how an exception can be thrown from one method to another.

Take all the code that you wrote in the previous parts that actually do the work of asking the user for input, and validating that input, and put it into a method named getPositiveNonPrimeInteger. This should return an integer if everything goes ok. Let's say that you decide to have that method throw a specific type of exception object if the user types in, say, 10. We'll name the class BadNumberException, and it'll have just two constructors – the default, and one with a single, String parameter.

However, we've decided, for the sake of example, to have the getPositiveNonPrimeInteger method throw this exception, rather than handling it on it's own. So you'll have to handle the new exception type in the event handler for a Button that you’ll create. You should try experimenting with this code some – notice that when the exception isn't caught in the method, execution of that method immediately stops, but instead goes directly to the Catch statement (to the exception handler) in the Button’s event handler.

Make sure to test all three constructors.

© 2002, Mike Panitz, ® 2002, Mike Panitz

