BIT 260
Lecture 5
Page 1 / 2

Lecture 5
Quiz: Show up, create a VB project, list 2 separate controls, and give an example of how you might use each one.
There are ZIP'd up projects (all located in one, convenient solution) on the website - walk the students through getting & unpacking this.
· Don't forget to Set the StartUp Project within the solution
	Exception Handling
Note that all the demos are delivered in a single Solution, comprised of multiple sub-Projects. It would be good to first explain how this works out.
In order to run a particular project, you’ll need to right-click on that project, and select “Set As StartUp Project”
· Demo 1: 1-BasicExceptionHandling
Ultra-basic, essentially a fancy version of "if it failed"
Make sure to point out the basic idea - something weird happens, and the CLR/code generates an exception. Note that you shouldn’t use this to handle expected errors (such as reaching the end of a file that you’re reading)

Your code then handles that exception at some level.

1. Once the exception fires, the nearest enclosing try block is checked for catch handlers (or, if no catch handlers, then a finally clause).

2. If there’s more than one catch, they’re checked for a match, FROM TOP TO BOTTOM, until one matches the exception being thrown (including the situation where the catch handles a base class of the exception that’s being thrown).

3. Thus, you want to arrange your catch statements from most specific to least specific.
ApplicaitonException: CLS-required based class for all exceptions non-CLR code throws
SystemException: if the CLR itself needs to throw an exception, it’ll derive from this
Note: this has parallels with the Exception/Error dichotomy of Java, but isn’t as stupid (everything derives from Exception)

4. ONLY ONE catch statement will be executed.
The Exception’s Message property is extremely useful in giving useful feedback to the user.

	· Demo 2: 2-ExceptionHandling-Finally
Generic Catch, plus Finally
Your code then handles that exception at some level.

1. The ultra-generic catch statement can also handle exceptions that aren’t derived from Exception
You should never derive custom exceptions from anything else – it’s there for legacy C++ support.
You can see this work when you remove the catch handler for something else that will fire.

2. finally clauses are useful if you want to execute code regardless of how the try block is exited – it’ll run regardless of whether an exception is thrown (whether your try catches/handles it or not), or not.

	· Demo 3: 3-CustomExceptions
This contains four separate buttons

1. The button captioned Throw FCL Exception demonstrates how to throw a Framework Class Library exception
It creates the exception on multiple lines, using a local variable.

2. The button captioned Throw FCL Exception (From Sub) demonstrates how that unhandled exceptions from a Sub can be handled at a higher level.
It instantiates the new exception in a single line, which is lots more convenient

3. The button captioned Throw Custom Exception demonstrates how to throw an Exception class that you created.
Not surprisingly, it’s just about identical to the standard stuff – the interesting stuff is in the new Exception class.
Note: .Net naming convention is that new exception classes’ names end in Exception.

4. The button captioned Click Here To Convert To Integer demonstrates a more ‘typical’ use of this.
Notice how the exception itself might throw an exception, if it’s Properties are used improperly.

Page 1 / 2

