
Review: Classes (public/private, methods, data fields), Arrays

The goal for this exercise In this lesson, we're going to build up to creating a class that manages access to an array for us. We'll start by reviewing how to deal with an array of simple types (such as integers) that is managed by a class that we create.

What you need to do for this exercise:
In the starter solution, you will find a project named SmartArray_Test. You need to fill in the C++ class named SmartArray. SmartArray should provide the methods listed below. The major goal of this exercise is make sure that you're familiar & comfortable with classes in C++, pointer, arrays / reference types, and that you can create a class that manages a collection of data. Thus, you should fully encapsulate your object-oriented SmartArray class, as you saw in previous lessons

	
For this exercise, you have been provided with a project that contains several tests for your SmartArray class. When you're done, your SmartArray class should pass 100% of the tests.
As the term goes on, we'll be looking at test-driven development, as a means of helping to get you in the habit of writing tests to verify that your code works (at least minimally). You may want to start this exercise by running the example code, and noting which tests pass, and which fail. For the tests that pass, think about whether it's a good test or not, given that it passes, even when the class clearly doesn't work.

<The SmartArray class is described on the next page>
	SmartArray Data & Methods
	

	Data Field Name
	Type
	Description:

	rgNums
	Array of ints
	[bookmark: _GoBack]A reference to pointer to an array of integers.

	Note: all data fields should be marked private
	

	Method Name
	Returns
	Description/Parameters:

	Default constructor
	<nothing>
	Allocates an array of 5 integers.
The rest of the class must be written so that if we were to change this to be, say, 10 integer, all other methods would function still correctly.

	SetAtIndex
	true if array slot was successfully set, false if it didn't work (for any reason)
	Parameters:
1. An integer that is the index of the element to set
2. An integer that is the value to set that element to

Conceptually,
SmartArrayObject.SetAtIndex(10, 20)
this will accomplish the same sort of thing as saying
Array[10] = 20;
would accomplish with a normal array

	GetAtIndex
	The integer value at the array slot, or INT_MIN if the method is unable to access the slot, for any reason.
	Parameter:
1. An integer that is the index of the element to get

Conceptually,
SmartArrayObject.GetAtIndex(10);
this will accomplish the same sort of thing as saying
Array[10];
would accomplish with a normal array

	PrintAllElements
	Nothing (void)
	Parameters: None

Print all elements of the array, one per line, onto the console.

	Find
	true if at least one element in the array is the same value as the parameter, false if the given value isn't present in the array.
	Parameter:
1. An integer that may or may not be in the array.

This method takes it's parameter, and sees if that value is located anywhere within the array. If it finds even a single slot of the array with the same value as the parameter, it will return true. If the value isn't found anywhere within the array, it will return false.

	Note: all methods should be marked public
	

