BIT 142
Lesson 02
Page 10 / 10

REVIEW

I/O Expectations:

Know Write vs. WriteLine

Understand both + and {0} syntax

Point out the {0}, {1}, etc, etc
Should know what the following code does:
	static void Main()

{

int i;

int total = 0;

for (i = 0; i < 5; i++)

{

Console.Write("i is: " + i);

total += i;

}

Console.WriteLine("After {0} iterations, the total is {1}", i, total);

Console.WriteLine("After {0} iterations, the total is {1}", i, total);

}

Mention the switch from ‘memorize a lot of stuff’ in PCE 01, towards the notion of ‘learn a concept, and apply it a lot of different places’ here in PCE 02

If Statement (§ 2.5) (covered OL)
If is a ‘control statement’, meaning it controls how your program executes

Basic idea:

if (4 > 3)
// parens NOT optional.
// If what’s inside parens evaluates to true…

{

/* then we do these statements. */

Console.WriteLine("4 is greater than 3!);

}

/*Always do the statements following */

Console.WriteLine("Done analyzing 4 > 3");

What does the > operator do?

Relational Operators

Up till now, all 5 operators we’ve seen have evaluated to numbers

Relational / comparison operators evaluate to true or false.

As a matter of fact, anything except 0 (zero) evaluates to ‘true’

4 > 3 is true, 4 < 3 is false

Rel. Ops:

1. <

Less than

2. <=

Less than or equal to

3. >

Greater than

4. >=

Greater than or equal to

5. ==

Equal (no space between each ‘=’)

6. !=

Not Equal (no space between ‘!’ and ‘=’)

Each of these evaluate to true or false.

If details (covered OL)
1. A block statement is the { /* more statements here */ } that follows the if.

You don’t have to put a block statement after it. You could do

if (4 > 3)

Console.WriteLine("4 is greater than 3");

Console.WriteLine("Done analyzing 4 > 3");
instead of

if (4 > 3)

{

Console.WriteLine("4 is greater than 3!);

}

Console.WriteLine("Done analyzing 4 > 3");

these two code snippets are completely equivalent.

2. An empty statement is just a semi-colon. When executed, it does nothing.
;
// This is an empty statement
It’s legal, but probably wrong, to put an empty statement after the if:

if (4 > 3) ; // semi-colon w/ no code before it is the empty statement

Console.WriteLine("4 is greater than 3!";
// This program always prints

Console.WriteLine("Done analyzing 4 > 3");
// both of the lines

3. Don’t confuse = and = =

= evaluates to whatever’s on it’s right side

if (x = 1)
// compile time error in C#, since 1 is neither true nor false

Console.WriteLine("This never even runs :(");

if (x = = 1)

Console.WriteLine("This only gets printed if x is equal to 1");

If … Else Statements (covered OL)
We’d like a statement that’ll do one thing, or do another thing, but never both.

<Draw split on the board>

Syntax for this is:

if (grade >= 65)

{

Console.WriteLine("You passed ");
}

else

{

Console.WriteLine("You didn’t pass");

}

Note that only one part (the if clause, or the else clause) will get executed – never both.

ICE: Going to the ballgame

Make sure that you understand how if…else statements work by doing the ICE for L3, Part 1.

ICE: Numeric to Letter Grade

Having seen a bunch of operators, and having used the “if” statement a bit, you should be able to solve a small problem, with a bit of work.

The problem: given a number grade between 1 and 10, tell the user what letter grade corresponds to that number grade.

For example, if the user got 8/10 points on a quiz, that would be a “B”

Do follow the instructions for solving the problem

Even though this problem is small, and pretty simple, it’s good to develop a structured approach to solving problems.

Further ICEs:

Create a program that’ll take your % grade, and convert it to your GPA

(as per the syllabus)

Create a program that’ll take the number of points you’ve got, and convert it to your GPA (as per syllabus)

Nesting Structures

For all of the control structures we’ve seen & will see, you can nest them.

To “nest” a structure means to put a second structure inside of a first, like so:

	Line #
	Source Code On that line

	1
	// This outer if is the first control structure.

	2
	if (grade >= 65)

	3
	{

	4
	
// This inner “if” is the second,

	5
	
// nested control structure.

	6
	
if (grade >= 75)

	7
	
{

	8
	

Console.WriteLine("You passed with at least a C");

	9
	
}

	10
	
Else

	11
	
{

	12
	

Console.WriteLine("You passed with a D");

	13
	
}

	14
	}

	15
	Else

	16
	{

	17
	
Console.WriteLine("You didn’t pass");

	18
	}

You trace these structures exactly like you’d trace any other structure -

if the value of the grade variable is greater than or equal to 65, then you do what’s in the if clause (lines 3 to 14 - in this case, another if statement). If grade is less than 65, you do what’s in the else clause (lines 16-18).

Example: assume grade is 95

Start at line 2, and evaluate the expression:

grade >= 65 (rewrite equation with value of variable)

95 >= 65 (only 1 operator)

true

Thus, we’ll next execute lines 3 to 14. The next line with code is line 6:

if (grade >= 75) – evaluate the expression inside the if statement

<omitted for brevity> - true

Thus, we’ll do lines 7-9, which contains just the cout line.

It’s often convenient to record the output of the program in a separate column in order to keep it straight

Having executed the if clause on lines 7-9, we skip the else clause (L. 10-13)

Having executed the first if clause(L.3-14), we skip the first else clause (L.16-18)

Note a common (and very readable) way of indenting if … else if statements is:

if (grade < 65)

{

Console.WriteLine("You didn’t pass");

}

else if (grade <= 75) // We nest the next if inside the else clause

{

Console.WriteLine("You passed with a D");

}

ICE: Numeric to letter grade for a 100 point scale

Do this to make sure that you can apply what you’ve learned to a more open-ended problem.

Switch statement (covered OL)
Very useful for dispatching messages

Syntax:

	Line
	Code

	1
	switch (<controlling expression>)

	2
	{

	3
	
case 1:

	4
	
{

	5
	
// Do this if <controlling expression> evals to 1

	6
	
// Your Code Here

	7
	

break;
// break means to branch to the line

	8
	

// after the switch (below)

	9
	
}
// You can enclose the statements for a case inside

	10
	// parentheses if you want. Or you can opt not to (see

	11
	// next case)

	12
	
case 3:

	13
	

// Do this if <controlling expression> evals to 3

	14
	
// Your Code Here

	15
	
// You can have as many cases as you want

	16
	

break;
// break means to branch to the line

	17
	

// after the switch (below)

	18
	default:
// This case is optional

	19
	

// Do this if none of the other cases are executed.

	20
	

break;
// break means to branch to the line

	21
	

// after the switch (below)

	22
	}

	23
	// This is the line you’ll execute after a “break” line

I’ve tried to bold-face the stuff that’s not comments, to show what’s important.

Control flows as follows:

1. When the program reaches line 1, the controlling expression is evaluated, which should evaluate to a number. Remember what the expression eval’d to.

You CAN switch on a string variable, and use string values for the cases

2. Go through each of the case statements, and compare that value to the labels for each.

3. Once you find a match, execute the code under it.

a. If you don’t find a match, but there is a ‘default’ clause, then execute that. You only execute the default clause if nothing else matches.

4. If you find a line with “break” on it, jump to line 23 (the next line after the switch statement)

a. The parentheses around the code (under the “case” line) is, in fact, optional. If you want to, you can include them (like on lines 4 & 9), or you can omit them (lines 12-17).

ICE: Switch

Something-O-Meter (for example, 10-point numeric grade to letter equiv.)

Do this to make sure you’ve got the syntax down.
Different Uses

At this point, we’ve seen a bunch of different branching mechanisms. You can use any one of these to simulate the others – enough if … else statements can be used instead of a switch statement, for example.

So the choice of which to use is most a matter of style. Generally:

Switch: choosing amongst a larger number of different, constant, choices.

Example: When a web browser is unable to obtain a web page, there are a number of different error codes that can be returned, and they all have numeric values (404, 400, etc). A switch statement could be used to have the browser do different things based on the exact error that shows up.

If: One time conditional action

Example: If the web browser just started up, load the default home page.

Example: The program displays a menu to the user (“Option 1: …. Option 10:”) . If the user didn’t pick a valid choice (user picked option 11, which doesn’t exist), then inform the user that an invalid option was chosen.

Example: If the user wants to join the betting pool to wager on whether the teacher will assign homework tonight, collect the info needed to enter the user’s bet.

If … else : Choose between one of two mutually exclusive choices

Example: You write a program to gather the info needed to rent a car to somebody. If the renter wants to pay for insurance, gather that info. Otherwise, use the default insurance that the rental company uses for it’s cars.
Integer division:

Both operands are integers

The result is also an integer.

How this happens:

1. Do the division normally

Ex: 7/4 = 1.75

2. Drop any fractional part
 Ex: 1.75 (1

Floating-point division:

If at least one operand is a float or double:

Ex: int a = 10 ; float b = 3.0; cout << a / b;

1. Convert the integer (if there is one) to a float/double:
Ex: a / b (10 / 3.0 (10.0 / 3.0

2. Do the division normally:
Ex: 10.0 / 3.0 (3.3333333…

3. Remember that there is a finite amount of space in the computer to represent numbers, and so you won’t necc. have unlimited precision - you may see it as “3.33334” or something similar

Modulus Operator

Before we do some exercises, there’s one more operator you need to know

%

Modulus, or Remainder

If we do long division, we’ll sometimes get a remainder:

[image: image1.wmf]1

3

10

3

R

% gives us the integer after the “R”

so, in C++,
10 / 3 = = 3
10.0 / 3 = 3.3333333

10 % 3 = = 1

This operator is useful, because for X % M it’ll always give a result that is

0 <= result < M

A C++ array that has 4 elements is accessed using indeces 0, 1, 2, 3

(i.e., C++ starts numbering array elements at 0, not 1)

You’ll see this occasionally, later

Note: precedence is less than division, greater than addition

Promotion

Mention this specifically for function parameters
Logical Operators

Work very hard on these logical ops

They’re tricky,

They’re what let you create monstrously complex expressions

We’ll hit this topic repeatedly, along with the other operators

Note that these are evaluated as part of an expression just like other ops

Note that AND & OR have lower precedence than most else we’ve looked at, so you can say things like

grade >= 65 && grade < 70

	C++ Syntax
	Name
	Meaning

	!A
	Logical NOT
	Reverses the logical true/false value:

If A is true (for numbers, this means that it’s something other than zero), then !A is false, or zero.

If A is false (for numbers, this means that it’s zero), then !A is true, or one (numerically, 1).

Note that this is a unary operator, meaning that it takes only 1 – the “A”.

	A && B
	Logical AND
	Logical AND evaluates to true ONLY IF BOTH A and B are true.

Otherwise it evaluates to false.

Both this and OR are binary operators, so they take two arguments – A, B

	A || B
	Logical OR
	Logical OR evaluates to true if either A, or B, or both A and B are true.

Logical Or evaluates to false ONLY IF BOTH A and B are false.

Note that all these operators evaluate to a true/false value, and thus can be fed into other logical operators.

True/false values are often called Boolean values, after Boole.

*** It’s very important to understand how C++ converts numeric values to Boolean values: zero is false, any other number is true. Positive numbers are true, negative numbers are true, fractions are true. If it’s not zero, then it’s true.

Lecture outline:

· I/O Expectations
· If, If/else, switch

· Skim Operators:

· Relational

· Logical

· Game topics
Game Topics
First up: Get Visual C# 2010 Express!!!

(Then get XNA Game Studio 4.0)

Background Info (show page)

· There may (or may not) be videos available – you are NOT required to watch them

· The duration (length) is listed on the page; they’re typically pretty short

· Coordinate System: 2D system, with origin at lower-left, X ↑ rightwards, Y ↑ upwards, just like math class

· Init(Update(Draw cycle
Emphasize the ‘flip book’ animation aspect of this
· Compile and run the game

· Play for a bit

How does the game work?

· Emphasize that this is the ‘finished version’ and has all the bells and whistles!

· Open up (in VS, in Solution Explorer): BlockBreakerGame(Game.cs

· Briefly look at initialize method
· Emphasize skill of effectively ignoring stuff that doesn’t make sense just yet

· Briefly look at update method

· Explain paddle, ball
· Briefly mention what regions do, with caveat that this is a tour, not stuff they’ll be quizzed on
· Explain “Does the ball exist?” line
· World boundary collision

· Skim over other stuff

· Skim over block collision

Let’s look at a tutorial for next week: SimpleIf
· Notice simplified init

· EXPLAIN DEBUG MODE

· KeyTapped vs. KeyDown

· paddle.moveLeft/etc vs. paddle.CenterY += 1
· Teleporting ball to a location
· (There’s nothing to hand-in for this tutorial)

Let’s look at a tutorial for next week: SimpleIfWithTravellingBall
· Note that the web pages for the tutorials use Java syntax, but the C# project uses C# syntax

· Explain “Does the ball exist?” line

· World boundary collision
Let’s look at a tutorial for next week: IfElse_Multiway
· Init: Note the existence of new block types (fire, ice)

· Initially they’re hidden (as normal blocks) then you reveal them (via a method call) later on

· Debug mode reveals them

· Update: Note the if/else structure for the screen edges (near the bottom) and the block types
· Go over exercise #1

Let’s look at a tutorial for next week: LogicalOperators
· Explain the basic idea

· Init: column of fire, column of normal, column of ice
· Must reveal a fire/ice before removing it

· Remove fire block with ice ball & vice versa

· Normal removed with either fire or ice

· +`
BIT 142

Page 10 / 10

_1173728422.unknown

