:

Part 1.1: Tracing Code
· Looks good, overall.

· The program starts on line 5 (or 7, your choice), and so you should start your trace there, too.
 (-2)

· The robot’s backpack should have a zero (0) in it when the robot is first created, instead of a dash (-2)

· Lines that don't do anything (like the { and },blank, or comment lines) should be left out of the trace.

(-1)

· You need a True/False column.
 (-4)

· You're missing the line numbers.
 (-4)

· You need to include all the lines with “if” statements (whether the lines are true or false)
(-4)

· The second "if" is false.
 (-2)

· For If statements that are false, the program literally jumps over the following lines; you should leave these lines out of the trace.
(-2)

· If line 28 is false, then lines 30-34 are left out of the trace (i.e., the program jumps over them)
(-2)

· You should use just one table, rather than pasting a bunch of them together.
(-1)

· You didn't remove the Directions, etc, from the bottom of the assignment.
(-2)

· Since a program trace is supposed to show what the program does as it's running, then the lines (such as 1, 3, 5) that actually help the compiler shouldn't be listed.
(-1)

· You left out the setup code - the new City, new Robot, and new Thing lines.
(-6)

· When tracing through the city set-up, remember that the robot continues to exist after it's created, and so it's ave,st,dir, etc columns should be copied down, even if they don't change.
(-2)

· Information that doesn't change (such as the avenue or street number when the robot doesn't move) should still be copied into each row of the table.
(-2)

· You don't ever mention where the ian robot is – track ian's location like amelia's, using some of the extra columns.
(-2)

· When you trace through an if or while statement, you should use a column to describe whether the condition is true or false.
(-2)

· You should only write something in the True/False column if the line is an if or while.
(-2)

· Not every if statement is true.
(-6)

· You didn't correctly identify which if statements are true, and which are false.
(-6)

· One of the if statements that you said was false actually evaluates to true.
(-5)

· When an "if" statement is false, you should simply leave out any statements that it skips.
(-2)

· This is missing entirely.
(-25)

Part 1.2: Tracing Code
· Looks good, overall.

· (Fix any mistakes that you made in the previous trace, and also made in this one, even if they’re not specifically listed here)

· Lines that don't do anything (like the { and }, or blank lines) should be left out of the trace.
(-1)

· The program starts on line 28 (or 30, your choice), and so you should start your trace there, too.

(-2)

· You don't include all the City set-up code, including the lines that create the City, Robots, etc.
(-6)

· You don't keep track of each of the Walls, 1 per column.
 (-2)
Make sure to copy the walls onto each row (since the Walls never move)
· The code doesn't loop back to the start of the method (command), just back to line 13.
(-2)

· You don’t include line 13 every time that it's run.
 (-4)

· While loops continue to execute (to loop) until they're false. In this case, until line 13 is false
(-5)

· You don’t include line 13 every time that it's run, including those times that it's false.
 (-2)

· You should put into your trace the lines for things like ian.keepGoing,
(-2)
so it's clear HOW the program gets to line 13, etc.

· There's a wall @ (3,8, SOUTH edge) which'll stop the loop.
 (-7)

· You didn't trace through the turnRight service.
 (-2)

· This is effectively missing.
 (-25)

Part 2: Finding Errors

· Looks good, overall.

· The error on line xx needs a slightly different fix –you need to rotate the robot 360 degrees, five WHOLE rotations.
 (-3)

· Lxx is a compile-time error.
 (-1)

· Missing an intent error – the code will fall into an infinite loop.
 (-4)

· It compiles and runs, but the Christopher robot doesn't actually spin.
 (-5)

· This is missing almost entirely.
 (-15)

· This is missing entirely.
 (-25)

Part 3: The racing robot
· Looks good, overall.

· You didn't put your name, class, etc, in comments at the top of the file.
 (-2)

· You didn't comment your code enough.
 (-2)

· The file you handed in doesn't compile (file vs. class name)
 (-2)

· The file you handed in doesn't compile.
 (-2)

· Since you need to have the robot move across a row of the City several times, you ought to have a single method (maybe named moveToWall) that you can call a couple times
 (-2)

· Also look for opportunities to create new types of commands like turnaround, etc.
 (-2)

· Code that you comment out (because you're not using it) should be removed before handing in the assignment.
(-2)

· You should you put your "move, go down to next row" logic into a loop, so you don't have to type it out 4 times.
(-2)

· Put everything into a method named DoEverything, so that main need only call that command to run the program.
(-2)

· When putting things down, why not use a loop, instead of four moves?
(-2)

· Put in a command to be run that'll handle putting all the Things down, and returning to the correct spot.

(-2)

· This is a great start, but from here, step back and look at what actions get repeated (such as going down a hallway to get a Thing), and/or are complex, but mentally can be thought of as 'blocks' of actions (like putting all four Things down at the end, or returning to the top-left corner), and put in some new services to do those things.
(-4)
· You should format your code so that it's consistent w/ the lectures / book – move lines 34 – 42 in one tab stop.
(-2)

· This is missing entirely.
(-25)

Grade:

(Note: Anything that has been “grayed out” isn’t something that you’re actually losing points for, but the instructor wanted to leave it in in order to make sure that you don’t forget to thinking about it while doing the revision. If it’s listed here, you should fix it, even if it is grayed out.)

(Note: If you have any errors that are duplicated in different areas (for example, you make the same mistake in both trace tables), you'll lose the points once, and you'll only see the mistake listed here once. HOWEVER, you need to fix every place the mistake was made, in order to get the points during in revision.)
Your instructor has found that some students will 'panic' when shown an apparently low grade for the first version of a homework assignment, despite the fact that the grade can improve (often significantly) on the revised version. Thus, no grades are shown on the gradesheet for your first version (your revised, final version will display a grade).

In order to calculate your grade, you need to do the following: add up all the numbers in the right-hand margin (example: -2 + -2 + -3 (-7). Add that number to 100 (example: 100 + -7 (93)
NOTE: This is a partial list of possible errors, in the sense that it’s always possible for you to have problems that aren’t listed above. For that reason, your particular homework submission may have point deductions for items not listed above.
