
The Lay of the Land

 This Web supplement to Java: Learning with Robots can be used to
either look ahead to what you will be learning, or as a review for what
you have learned. This supplement provides a view of the lay of the
land. It’s like standing on a high hill at the beginning of a hike to see
what kind of interesting places lie ahead–or surveying the view at the
end of the hike to see where you’ve been.

If you are at the beginning of your hike and looking ahead, this
chapter gives a glimpse of nine interesting places in the journey to
becoming an object-oriented programmer. By getting an early view
of them, you will know a little bit of what is to come, and be better
able to integrate what you are learning into a cohesive whole. And,
as any hiker knows, trudging up a mountain is easier if you can look
forward to what lies at the top and on the other side. Obviously,
there will be lots of details clarified later.

If you are at the end of your hike and looking backwards, this
appendix can help you remember where all you’ve been and what
you’ve learned. It could be used, for example, as part of your review
before an exam.

This supplement assumes that you have read the first chapter of
Java: Learning to Program with Robots.

Supplement Objectives
After studying this supplement, you should be able to describe the basic concepts used to:

¾ Extend classes with new services.
¾ Perform a task repeatedly.
¾ Write programs that can decide whether to take an action.
¾ Remember information in a method temporarily.
¾ Make services more flexible with parameters.
¾ Interact with the program’s user.
¾ Remember information for an object’s lifetime.
¾ Send the same message to different kinds of objects, with each object

behaving in a way appropriate for itself.
¾ Gather similar information together with a collection.

2 The Lay of the Land

1. Extending an Existing Class
Suppose that karel is working for a construction company that is paving
several streets running east and west. At each end of the construction site are
walls, blocking traffic from using the streets. Traffic continues to cross the
construction site on the avenues, however. To warn the cross-traffic to slow
down, flashers are placed on each intersection every night. karel, jasmine,
and pat have the job of collecting them again in the morning. One robot
begins on the west end of each street being paved. They each proceed to the
east end, collecting the flashers along the way. When they have collected
them all, they turn around. Their initial and final situations are shown in
Figure F-1 and Figure F-2.

The flashers shown in Figure F-1 are special kinds of Thing objects that
have a special appearance. They also have two additional services, one to turn
on the flashing light and another to turn it off.

Using Existing Techniques
Solving this problem is not difficult, but it is long and repetitive. The
program has six lines of code placing walls, and twelve placing flashers. The
instructions to each robot are nine lines long, and are repeated three times,
once for each robot. Each set of instructions is the same except for the name
of the robot. Much of the program is shown in Listing F-1. Some repetitive
lines are omitted.

One of the primary tasks of programming is to find better abstractions
for programs such as these, so they become easier to read, write, and
understand.

Figure F-1: The initial situation for picking up flashers on a
construction project.

Figure F-2: The final situation.

 1 Extending an Existing Class 3

Listing F-1: Much of the program to collect flashers from the construction site.

 1 import becker.robots.*;
 2
 3 public class Main extends Object
 4 {
 5 public static void main(String[] args)
 6 { City site = new City();
 7
 8 // create the walls at the end of each street’s construction zone
 9 Wall detour0 = new Wall(site, 1, 0, Direction.EAST);
 10 Wall detour1 = new Wall(site, 2, 0, Direction.EAST);
 11 Wall detour2 = new Wall(site, 3, 0, Direction.EAST);
 12 Wall detour3 = new Wall(site, 1, 5, Direction.WEST);
 13 Wall detour4 = new Wall(site, 2, 5, Direction.WEST);
 14 Wall detour5 = new Wall(site, 3, 5, Direction.WEST);
 15
 16 // create 12 flashers, four on each street
 17 Flasher flash00 = new Flasher(site, 1, 1, true);
 18 Flasher flash01 = new Flasher(site, 1, 2, true);
 19 Flasher flash02 = new Flasher(site, 1, 3, true);
 20 Flasher flash03 = new Flasher(site, 1, 4, true);
 21 Flasher flash04 = new Flasher(site, 2, 1, true);
 ... // seven similar lines omitted

 29
 30 // create the three robot workers
 31 Robot karel = new Robot(site, 1, 1, Direction.EAST);
 32 Robot jasmine = new Robot(site, 2, 1,Direction.EAST);
 33 Robot pat = new Robot(site, 3, 1, Direction.EAST);
 34
 35 // tell each robot what to do
 36 karel.pickThing();
 37 karel.move();
 38 karel.pickThing();
 30 karel.move();
 40 karel.pickThing();
 41 karel.move();
 42 karel.pickThing();
 43 karel.turnLeft();
 44 karel.turnLeft();
 45
 46 jasmine.pickThing();
 47 jasmine.move();
 ... // Seven instructions to jasmine, similar to lines 38-44, omitted.
 // Nine instructions to pat omitted.

 65 }
 66 }

Find The Code:
layofland/extend

4 The Lay of the Land

Creating A New Kind of Robot
This program would be so much easier to understand if the robots could do
more than just pick things up, move, turn left, and put things down. For
example, what if we had a new kind of robot that can also collect a row of
flashers, and turn around? With this new kind of robot, nine lines of
instruction for each robot could be reduced to two:

karel.collectFlashers();
karel.turnAround();

Besides making the main program shorter and easier to understand,

defining a new kind of robot also allows us to reuse code. Not only can
karel use these two services, but so can jasmine and pat.

We can and should create a new kind of robot with new services
whenever a complex task has distinct parts or the same task is performed
several times, either by the same robot or several robots.

Listing F-2 shows how to define a new kind of robot named Collector
with two new services: collectFlashers, and turnAround. This code
should be in its own file, named Collector.java.

Each of the two new services, defined in lines 11-19 and 22-25, follow a
regular pattern: the keywords public and void are followed by the name of
the service and a pair of parentheses. After this, between { and }, are the
instructions that tell the robot how to carry out the new command.

When a robot named karel is told to move, we name the robot and then
tell it to move – for example, karel.move(). This approach doesn’t work
inside a new kind of robot like Collector, because we don’t know what the
robot will be named. It could be named karel, jasmine, pat, or something
else. So we tell “this robot” to move by writing this.move().

The name of the class, Collector, must be used to construct these new
kinds of robots. Replace lines 31, 32, and 33 in Listing F-1 with

Collector karel = new Collector(
 site, 1, 1, Direction.EAST);
Collector jasmine = new Collector(
 site, 2, 1, Direction.EAST);
Collector pat = new Collector(
 site, 3, 1, Direction.EAST);

karel, jasmine and pat have all the capabilities of ordinary robots.

They can move, turn left, pick things up, and put things down. They can also
collect a row of four flashers and turn around, thanks to the definitions
contained in Listing F-2. And so, we can replace lines 36 to 44 in Listing F-1
with just two lines:

Key Idea: Define a new
kind of robot with new
services for long or
complex tasks, or tasks that
need to be done several
times.

Key Idea: When defining a
new service, use this
instead of the name of a
robot.

 1 Extending an Existing Class 5

karel.collectFlashers();
karel.turnAround();

A similar replacement can be made for jasmine and pat.

Listing F-2: The definition of a new kind of robot that has two new services for collecting
flashers and turning around.

 1 import becker.robots.*;
 2
 3 public class Collector extends Robot
 4 {
 5 public Collector(City city,
 6 int str, int ave, Direction dir)
 7 { super(city, str, ave, dir);
 8 }
 9
 10 // Collect a row of four flashers
 11 public void collectFlashers()
 12 { this.pickThing();
 13 this.move();
 14 this.pickThing();
 15 this.move();
 16 this.pickThing();
 17 this.move();
 18 this.pickThing();
 19 }
 20
 21 // turn around and face the opposite direction
 22 public void turnAround()
 23 { this.turnLeft();
 24 this.turnLeft();
 25 }
 26 }

Creating Other New Kinds of Robots
Looking back to Chapter 1, we could have used new kinds of robots many
times. In one end-of-chapter problem the robot moved around a square. It
could have used a new service named moveAlongSide. The robot in many of
the problems could have used a new service named turnRight, and in
another problem two different robots could have each used move3. In each
of these situations, one or more robots performed the same sequence of
instructions several times, or a complicated action could have been broken
down into several steps.

New kinds of robots, customized for these situations, can be defined with
the template shown in Listing F-3. Most of the code is the same for every
new kind of robot. You need to replace «className», and «newService»
to customize the template for your unique needs. «className» follows rules

Find The Code:
layofland/extend

6 The Lay of the Land

that we learned in Chapter 1. Use the same name both places that
«className» appears.

Listing F-3: A template for creating a new kind of robot with a new service. Additional
services may also be added.

 1 import becker.robots.*;
 2
 3 public class «className» extends Robot
 4 {
 5 public «className»(City city,
 6 int str, int ave, Direction dir)
 7 { super(city, str, ave, dir);
 8 }
 9
 10 «newService»
 11 }

In fact, this same technique can also be used to create a new kind of city
that has new services to place walls and flashers for the construction site.
The new kind of city might be called a ConSite, short for “construction site.”
It has two new services, one for placing barriers (walls) and another for
placing flashers.

Using a ConSite city and Collector robots significantly shortens our
main program, making it easier to read and understand. The revised program
is shown in Listing F-4. This program behaves exactly the same as the 69 line
program shown in Listing F-1, but is much simpler and easier to read.

Listing F-4: A new version of the program using a new kind of robot and a new kind of city.

 1 import becker.robots.*;
 2
 3 public class NewMain extends Object
 4 {
 5 public static void main(String[] args)
 6 { ConSite site = new ConSite();
 7 site.placeBarriers();
 8 site.placeFlashers();
 9
 10 Collector karel =
 11 new Collector(site, 1, 1, Direction.EAST);
 12 Collector jasmine =
 13 new Collector(site, 2, 1, Direction.EAST);
 14 Collector pat =
 15 new Collector(site, 3, 1, Direction.EAST);
 16
 17
 18
continued…

Find The Code:
layofland/extend

 2 Repeating Statements 7

Listing F-4 continued

 19 karel.collectFlashers();
 20 karel.turnAround();
 21
 22 jasmine.collectFlashers();
 23 jasmine.turnAround();
 24
 25 pat.collectFlashers();
 26 pat.turnAround();
 27 }
 28 }

2. Repeating Statements
The paving project where karel, jasmine, and pat work has been
progressing smoothly. However, an influential resident on jasmine’s street
has convinced city council to pave one extra block of that street. To offset
the cost, only two blocks of pat’s street will be paved. The new situation is
shown in Figure F-3.

Now we have a problem – we apparently need three different kinds of
robots. karel, the top robot in Figure F-3, can still be a Collector, as we
defined in Listing F-2. jasmine, the middle robot, must collect the flasher
from an extra intersection. pat, the bottom robot, will malfunction unless we
instruct it to collect flashers from only three intersections rather than four.

Creating three different kinds of robots that do almost the same task is a
poor solution. Fortunately, there is a better way. We know that each robot
has completed its task when it reaches the wall at the opposite end of the
street. In between the starting position and that wall, each robot does the
same steps over and over: collect a flasher, and move to the next intersection.
If we can define the Collector robots this way, then karel, jasmine, and
pat can all be the same kind of robot.

 Figure F-3: Collecting flashers on streets of differing lengths.

8 The Lay of the Land

Java’s while statement can be used to repeat statements over and over.
The while statement can be used whenever a task is composed of identical
steps that are repeated until the task is done. In this case, the identical steps
are collecting a flasher and moving to the next intersection. These steps are
repeated until the opposite wall is reached. Using this algorithm, each of the
three robots will perform correctly even though they are collecting flashers on
different lengths of street.

A version of collectFlashers that uses this idea is shown in Listing F-
5. The while statement extends from line 12 to line 15 and consists of three
parts.
¾ The keyword while signals to Java that something is going to be

repeated.
¾ The condition determines if the statements should be repeated again.

In this example, the condition is (this.frontIsClear()). It asks
whether this robot’s front clear of anything that can prevent it from
moving (like a wall).

¾ The body of the while statement, the part between { and }, is the
code that is repeated.

Listing F-5: The Collector class, defined with a while loop in collectFlashers.

 1 import becker.robots.*;
 2
 3 public class Collector extends Robot
 4 {
 5 public Collector(City city, int str, int ave,
 6 Direction dir)
 7 { super(city, str, ave, dir);
 8 }
 9
 10 // Collect flashers as long as the front of the robot is not blocked.
 11 public void collectFlashers()
 12 { while (this.frontIsClear())
 13 { this.pickThing();
 14 this.move();
 15 }
 16 this.pickThing();
 17 }
 18
 19 // turn around and face the opposite direction
 20 public void turnAround()
 21 { this.turnLeft();
 22 this.turnLeft();
 23 }
 24 }

How does this while loop work? When a robot is told to collect-
Flashers, the while loop first checks if the robot’s front is clear. That is, it
checks if it is blocked from moving forwards. If its front is clear, then it does

Key Idea: Many tasks
perform the same steps
over and over, until the task
is finished.

Find The Code:
layofland/repetition

 2 Repeating Statements 9

everything in the braces at lines 13-15. After it picks up a flasher and moves
to the next intersection, execution returns to line 12. The robot again checks
if its front is clear. If it is, everything in the braces is executed. This keeps
happening – check if the front is clear, and if it is, do everything in the braces
– until the front is not clear. Then execution resumes at line 16 – the line
following the while loop’s closing brace. Figure F-4 illustrates this process.

The while loop contains one pickThing instruction and one move

instruction, so the robot will always pick something up just as often as it
moves. However, the initial situation shows that it needs to move twice but
pick up three flashers. Thus, there must be one pickThing instruction after
the loop to ensure that the extra flasher is picked up.

Figure F-4: Illustrating the execution of a while loop. The dark lines in the code indicate the statements that are executed
to arrive at the situation shown on the right.

while (this.frontIsClear())

{ this.pickThing();

 this.move();

}

this.pickThing();

while (this.frontIsClear())

{ this.pickThing();

 this.move();

}

this.pickThing();

while (this.frontIsClear())

{ this.pickThing();

 this.move();

}

this.pickThing();

while (this.frontIsClear())

{ this.pickThing();

 this.move();

}

this.pickThing();

10 The Lay of the Land

A while loop is useful to repeat some code over and over. In this
example, the repeated code picked something up and moved. A robot could
also use a while loop to move until a streetlight is encountered, to pick up all
the flashers on a corner, to turn left until its front is clear, and so on.

3. Making Decisions
Work has been proceeding nicely on the construction site. karel, jasmine,
and pat are still collecting the flashers every morning. One morning,
however, they were unable to complete their jobs. It appears that several
flashers were stolen during the night. The robots malfunctioned when they
reached the empty intersections and tried to pick up the missing flashers. The
construction project is already over budget, and so the decision has been
made to distribute the eight remaining flashers randomly on the intersections.

Figure F-5 shows just two of the many possible initial situations. As you
can see, the robots can no longer automatically try to pick up a flasher from
every intersection. They must be reprogrammed to first check if a flasher is
present.

A robot may need to make decisions in other contexts, as well. It may
need to detect whether its way is blocked by a wall. If so, turn. It may need
to check whether it is facing south, and if it is, turn around. It may need to
check whether there are enough things in its backpack to carry out a job. If
not, go to a supply depot and get some more.

In each of these contexts, the robot should use an if statement. An if
statement tests a condition. If the condition is true, some additional code is
executed. If the condition is false, the additional code is skipped. For
example, in

if (karel.canPickThing())
{ karel.pickThing();
}

the additional code is karel.pickThing() and the condition is
karel.canPickThing(). If the condition is true – karel can, in fact, pick

Key Idea: Use a while
loop to execute the same
code an unknown number
of times.

Figure F-5: Two possible initial situations.

Key Idea: Use an if
statement to choose
whether or not to execute
some code, based on a
condition.

 3 Making Decisions 11

up a Thing (a flasher) – then the additional code is executed and the thing is
picked up. If karel is not beside a Thing, then karel won’t even try to pick
something up.

Figures F-6 and F-7 show two different initial situations and how karel
behaves when the code shown is executed. In each case, arrows show how
execution proceeds through the code.

Now, we need to apply this knowledge to keep karel, jasmine, and pat
from malfunctioning when they do their jobs. The code we need to fix is the
collectFlashers service in Listing F-5. Each use of this.pickThing()
must be replaced with three lines:

if (this.canPickThing())
{ this.pickThing();
}

We again use this instead of a robot’s name because we are defining a

new kind of robot that might be given the name karel, jasmine, pat – or a
completely new name.

Checking whether or not a robot is beside a thing is just one use of the
if statement. It is useful in many situations, wherever a program must
determine whether or not some code should be executed. Use it to test
whether or not a robot should pick something up, or whether or not
something should be put down. Eventually, we will use the if statement to
test whether or not a credit card’s balance is low enough to make a debit, or

Figure F-6: When there is a thing to pick
up.

Figure F-7: When there isn’t a thing to pick
up.

Initial Situation:

 Initial Situation:

Code Executed:

karel.move();

if (karel.canPickThing())

{ karel.pickThing();

}

karel.move();

 Code Executed:
karel.move();

if (karel.canPickThing())

{ karel.pickThing();

}

karel.move();
Final Situation:

 Final Situation:

12 The Lay of the Land

whether or not a name is too long to print in the allotted space, to give just a
few examples.

The if statement and the while statement are sometimes confused by
beginning programmers. Both include a test, but they are used for
fundamentally different things. A while statement tests if code should be
executed again. The code in the braces might be executed many, many times.
An if statement tests whether to execute code exactly once or not at all.

Testing for Specific Kinds of Things
The test for being beside a Thing is very general. Flashers are Things, but so
are ordinary Things! In addition, the techniques we used in Section 1 to
extend the Robot class can also be used to create new kinds of Things.

What if some other kinds of Things are on the construction site? For
example, suppose one of the intersections has a “tool” (represented by a
Thing), but no flasher. Then, when karel comes to that intersection, karel
first tests if it is beside a Thing. The “tool” will cause the condition to be
true, and karel will pick it up.

To solve this problem, we can write

if (this.canPickThing(IPredicate.aFlasher))
{ this.pickThing(IPredicate.aFlasher);
}

The new part, IPredicate.aFlasher, tells canPickThing and pickThing
that we are only interested in Things that happen to be Flashers.
canPickThing should only test if the robot is beside a Flasher, and
pickThing should only attempt to pick up Flashers. This restriction to
Flashers only applies to the canPickThing and pickThing where
IPredicate.aFlasher is included. It is not “remembered” for the next
time.

Helper Methods
The part of collectFlashers that picks flashers up is becoming more
complicated. It now includes a test to check whether the robot is actually
beside a Thing, and whether that Thing is, in fact, a flasher. Replacing the
simple statement this.pickThing() in Listing F-5 with the three lines
shown above obscures the logic of the while loop.

One way to make collectFlashers easier to understand is to create
another service to handle the complexity of picking up a flasher. This new
service might be named pickFlasherIfPresent. Services that exist just to
simplify another method are sometimes called helper methods.

Listing F-6 shows a version of the Collector class that defines pick-
FlasherIfPresent. collectFlashers uses the method with the statement

Key Idea: A helper method
often makes code easier to
understand.

 4 Temporary Memory 13

this.pickFlasherIfPresent();

By defining and using this helper method, the intricacies of picking up a
flasher only need to be written once instead of twice (once in the while loop
and once more right after the loop). It also retains the original simplicity of
the collectFlashers method.

Listing F-6: One method, pickFlasherIfPresent, can help another method,
collectFlashers, carry out its task.

 1 import becker.robots.*;
 2
 3 public class Collector extends Robot
 4 {
 5 public Collector(City city,int str,int ave,Direction dir)
 6 { super(city, str, ave, dir);
 7 }
 8
 9 // Collect flashers as long as the front of the robot is not blocked.
 10 public void collectFlashers()
 11 { while (this.frontIsClear())
 12 { this.pickFlasherIfPresent();
 13 this.move();
 14 }
 15 this.pickFlasherIfPresent();
 16 }
 17
 18 // pick up a flasher, if one is present on the current intersection
 19 public void pickFlasherIfPresent()
 20 { if (this.canPickThing(Predicate.aFlasher))
 21 { this.pickThing(Predicate.aFlasher);
 22 }
 23 }
 24
 25 // remainder of class omitted

4. Temporary Memory
The city’s public works department has taken the walls from the paving
project to another work site. The new situation is shown in Figure F-8.

14 The Lay of the Land

Figure F-8: The paving project, minus the walls.

This presents a problem. karel, jasmine, and pat had been using the
walls to determine when to stop collecting flashers. Without the walls, they
will keep going east. At each intersection they will check for a flasher. Not
finding one, they will go to the next intersection and check again – forever.

One possible solution is for each robot to count the number of moves it
makes. Each robot should move four times, attempting to collect a flasher
before each move. Then, collect the last flasher (if there is one) and turn
around. A significant disadvantage of this plan is that karel and pat will
have to travel farther than before. We will simply accept that limitation for
now.

To make this plan work, each robot will need to remember how many
moves it has made while it is collecting the flashers. Java provides variables to
store or remember information. A variable is like a box with a name. Each
variable stores a piece of information; in this case, a number. The number
can be replaced by a new number at any time.

The following code creates a new variable named numMoves and stores a
number, zero, in it.

int numMoves = 0;

A different number, in this case five, can be stored in numMoves like this:

numMoves = 5;

Notice that “int” is only used the first time, when the variable was created.
“int” indicates that the variable will store an integer, a certain kind of
number.

We can also use variables to calculate new values. For example,

Key Idea: Variables store
or remember information.

 4 Temporary Memory 15

int a = 0;
a = numMoves + 1;

will first create a new variable named “a”. In the next line, Java will first get
the number stored in numMoves (5) and add 1 to it, obtaining 6. This new
number is then put into the variable a, replacing the number that was there.
The variable on the left side of the equals sign is forced to have the value
calculated on the right side of the equals sign.

We can also use the same variable on both the left and the right side of
the equals sign. For example,

numMoves = numMoves + 1;

gets the current number stored in numMoves (5) and adds 1 to it. This new
number, 6, is then stored in the variable named on the left side of the equals
sign. That is, numMoves is now one larger than it used to be. This is the
fundamental step in counting – remembering a number one larger than the
previous number.

Now, we can combine counting with a while loop to move a robot four
times, a slight simplification of collecting flashers.

public void move4()
{ int numMoves = 0;
 while (numMoves < 4)
 { this.move();
 numMoves = numMoves + 1;
 }
}

Figure F-9 illustrates how this code is executed. It begins by creating a

variable, numMoves, to store the number of moves the robot has made so far.
The robot hasn’t moved yet, so the first value stored is zero. The test in the
while loop, numMoves < 4, checks to see if the loop should continue. If the
number of moves made so far, numMoves, is less than four, the two
statements between the braces are executed. Otherwise, the loop ends.
Inside the loop, the robot is told to move and the number of moves is
incremented by 1. A while loop used in this way is sometimes called a
“counted while loop.”

This particular while loop executes the move instruction four times, but
it compares numMoves to 4 a total of five times. In Figure F-9, every time an
arrow points to the line while (numMoves < 4) the comparison is made.
The first four times it is true that numMoves is less than 4. The last time,
however, numMoves has the value 4, and the loop ends.

To solve the flasher collection problem for karel, jasmine, and pat, the
code shown in Figure F-9 must also pick up a flasher just before the robot
moves, if one is present and again after the loop exits. This change is shown

Key Idea: Variables can be
used to count.

16 The Lay of the Land

in Listing F-7. This version of collectFlashers always moves four times
and checks five intersections for flashers. To understand why, look again at
Figure F-9 – the robot moves four times but visits five intersections.

Listing F-7: A version of collectFlashers that always checks exactly five intersections.

 1 public void collectFlashers()
 2 { int numMoves = 0;
 3 while (numMoves < 4)
 4 { this.pickFlasherIfPresent();
 5 this.move();
 6 numMoves = numMoves + 1;
 7 }
 8 this.pickFlasherIfPresent();
 9 }

Figure F-9: Illustrating the execution of a counted while loop.

while (numMoves < 4)

{ this.move();

 numMoves = numMoves + 1;

}

int numMoves = 0;

numMoves

is 0

int numMoves = 0;

while (numMoves < 4)

{ this.move();

 numMoves = numMoves + 1;

}

numMoves

is 1

int numMoves = 0;

while (numMoves < 4)

{ this.move();

 numMoves = numMoves + 1;

}

numMoves

is 2
numMoves

is 3
numMoves

is 4

int numMoves = 0;

while (numMoves < 4)

{ this.move();

 numMoves = numMoves + 1;

}

numMoves

is 4

 4 Temporary Memory 17

When a variable is defined inside a method it is called a temporary variable.
It may be used only within the method while the method is executing. When
the method is finished, the temporary variable and the information it contains
is discarded.

A temporary variable may be used to control a while loop any time you
know how many times a set of steps should be repeated. This is quite
different from the way the while loop was used in Section F-2. There the
steps were repeated over and over until the task was done. We didn’t know,
when we started out, how many times the loop would repeat before we
reached a wall and stopped.

Examples that effectively combine a temporary variable with a while
loop include:
¾ moving a robot around the four sides of a square.
¾ picking up exactly 100 flashers,
¾ running 10 laps around a track.
¾ counting the number the things on an intersection, replacing half of

them.
In each example, a set of steps is repeated a known number of times.

The last example is interesting because it uses two loops, with the
information gathered in the first used to control the second. Listing F-8
shows one way to solve the problem:

Listing F-8: Picking up half of the things on an intersection.

 1 public void pickHalf()
 2 { int numThingsFound = 0;
 3 while (this.canPickThing())
 4 { this.pickThing();
 5 numThingsFound = numThingsFound + 1;
 6 }
 7
 8 // Turn around to show when we start putting things down
 9 this.turnLeft();
 10 this.turnLeft();
 11
 12 // Put half the things back down
 13 int numPutBack = 0;
 14 while (numPutBack < numThingsFound/2)
 15 { this.putThing();
 16 numPutBack = numPutBack + 1;
 17 }
 18 }

The first loop, at lines 3-6, is not a counted loop. We don’t know how
many times it will execute. Rather, it repeats while there is still something on
the intersection, counting the number of things it picks up. This count is
kept in a temporary variable named numThingsFound.

Key Idea: Temporary
variables are discarded
when the method
containing them is finished
executing.

Key Idea: Use a counted
loop when the number of
repetitions is known in
advance.

18 The Lay of the Land

The second loop, at lines 14-17, is a counted loop. It divides the number
of things found by 2 to calculate how many times to execute. As long as
numPutBack is less than this number, another thing is put down and the
count of things put down is incremented by one.

Remembering information temporarily in a variable is useful beyond
controlling loops. In the last example, the robot remembered how many
things were on the intersection so it could put back half of them. It might
remember which avenue and street it was on before beginning a task so it can
return there when it’s done, or the direction it’s facing so it can turn that way
again.

5. More Flexible Methods
The manager of the construction company has become concerned about the
solution just implemented. Recall that when the walls were in place, karel,
jasmine, and pat each traveled only as far as needed to collect the flashers
on their assigned street. Now, each robot checks five intersections even
though karel is on a street where only four need to be checked, and pat
really only needs to check 3 intersections. The manager is concerned that
karel and pat will wear out faster than necessary. She would like a way to
tell each robot how many intersections to check for flashers.

What the manager wants is a more flexible version of the service
developed in the previous section. There, we developed a service that always
moved four times, checking a total of five intersections for flashers to collect.
Instead of always checking five intersections, the manager should be able to
tell each robot how many intersections to check. This would be done in the
main method. In Listing F-4 we wrote

 16 karel.collectFlashers();
 17 karel.turnAround();
 18
 19 jasmine.collectFlashers();
 20 jasmine.turnAround();
 21
 22 pat.collectFlashers();
 23 pat.turnAround();

We would like to replace these lines with statements that specify the number
of intersections the robot should check. For example,

Key Idea: Temporary
variables have uses beyond
controlling loops.

 5 More Flexible Methods 19

 16 karel.collectFlashers(4);
 17 karel.turnAround();
 18
 19 jasmine.collectFlashers(5);
 20 jasmine.turnAround();
 21
 22 pat.collectFlashers(3);
 23 pat.turnAround();

With this change, the main method tells karel to check four

intersections. Similarly, jasmine and pat are told to check five and three
intersections, respectively.

Implementing this ability requires communicating the 3, 4 or 5 (or any
other number) from the place where collectFlashers is called to the place
where the number is used – the definition of collectFlashers. Adding a
parameter to collectFlashers facilitates this communication.

We need to make some minor modifications to the definition of
collectFlashers to receive the parameter given in main. The new version
is shown in Listing F-9. The changes from the previous version, described on
page 16, are in bold.

Listing F-9: A more flexible version of collectFlashers that uses a parameter.

 1 public void collectFlashers(int numIntersections)
 2 { int numMoves = 0;
 3 // move one fewer times than there are intersections
 4 while (numMoves < numIntersections - 1)
 5 { this.pickFlasherIfPresent();
 6 this.move();
 7 numMoves = numMoves + 1;
 8 }
 9 this.pickFlasherIfPresent();
 10 }

numIntersections is like a temporary variable that is automatically
assigned a value just before collectFlashers begins to execute. The value
it is assigned is the value given between the parentheses when
collectFlashers is called. When we write karel.collectFlashers(4),
numIntersections will be given the value four. When we write
jasmine.collectFlashers(5), then numIntersections will be given the
value five.

To check five intersections, the robot needs to move four times – one
less than the number of intersections. This observation implies that the loop
should execute numIntersections – 1 times – one fewer intersections than
specified by the manager. The while loop’s test at line 3 takes this into
account.

Key Idea: Parameters are
used to give additional
information required to
complete a job.

20 The Lay of the Land

A complete listing of the class containing main is given in Listing F-10.
It uses a new kind of City, shown in Listing F-11. This class uses the same
technique used to extend a Robot to add a useful service to a City: placing
the flashers. Finally, a complete listing of the Collector robot is given in
Listing F-12.

The parameter added in these listings gives collectFlashers a
tremendous amount of flexibility. This simple change shifts the service from
always checking five intersections to being able to check any number of
intersections. You can probably imagine how parameters could be used to
make a service that can move a robot any distance or a service that can pick a
specified number of things. Eventually, you will be able to write a goto
service that directs a robot to go to a particular intersection, no matter where
in the city it is (provided nothing blocks it).

Listing F-10: A main method calling services with parameters.

 1 import becker.robots.*;
 2
 3 public class Main extends Object
 4 { public static void main(String[] args)
 5 { ConSite site = new ConSite();
 6 site.placeFlashers();
 7
 8 Collector karel =
 9 new Collector(site, 1, 1, Direction.EAST);
 10 Collector jasmine =
 11 new Collector(site, 2, 1, Direction.EAST);
 12 Collector pat =
 13 new Collector(site, 3, 1, Direction.EAST);
 14
 15 karel.collectFlashers(4);
 16 karel.turnAround();
 17
 18 jasmine.collectFlashers(5);
 19 jasmine.turnAround();
 20
 21 pat.collectFlashers(3);
 22 pat.turnAround();
 23 }
 24 }

Find The Code:
layofland/parameters

 5 More Flexible Methods 21

Listing F-11: A new kind of city with a service to place flashers on the construction site.

 1 import becker.robots.*;
 2
 3 public class ConSite extends City
 4 { public ConSite()
 5 { super();
 6 }
 7
 8 public void placeFlashers()
 9 { Flasher flash01 = new Flasher(this, 1, 2, true);
 10 Flasher flash03 = new Flasher(this, 1, 4, true);
 11 Flasher flash04 = new Flasher(this, 2, 1, true);
 12 Flasher flash06 = new Flasher(this, 2, 3, true);
 13 Flasher flash07 = new Flasher(this, 2, 5, true);
 14 Flasher flash08 = new Flasher(this, 3, 1, true);
 15 Flasher flash10 = new Flasher(this, 3, 3, true);
 16 }
 17 }

Find The Code:
layofland/parameters

22 The Lay of the Land

Listing F-12: A new kind of robot that can collect flashers from a specified number of
intersections.

 1 import becker.robots.*;
 2
 3 public class Collector extends Robot
 4 {
 5 public Collector(City city,int str,int ave,Direction dir)
 6 { super(city, str, ave, dir, numThings);
 7 }
 8
 9 public void collectFlashers(int numIntersections)
 10 { int numMoves = 0;
 11 // move one fewer times than there are intersections
 12 while (numMoves < numIntersections - 1)
 13 { this.pickFlasherIfPresent();
 14 this.move();
 15 numMoves = numMoves + 1;
 16 }
 17 this.pickFlasherIfPresent();
 18 }
 19
 20 // pick up a flasher, if one is present on the current intersection
 21 public void pickFlasherIfPresent()
 22 { if (this.canPickThing(Predicate.aFlasher))
 23 { this.pickThing(Predicate.aFlasher);
 24 }
 25 }
 26
 27 public void turnAround()
 28 { this.turnLeft();
 29 this.turnLeft();
 30 }
 31 }

6. Asking the User
The manager of the construction company has expressed appreciation for the
flexibility gained by adding the parameter to collectFlashers, but she is
not quite satisfied. As it stands, the main method always tells karel to
collect flashers from four intersections, jasmine is always told to collect from
five intersections, and pat is always told to collect from three intersections.
The manager would like to vary the instructions each time the program is run.
Sometimes karel should collect from two intersections and sometimes from
forty – depending on the manager’s whim.

We can solve this problem by getting input – a number – from the human
who runs the program, storing that number in a temporary variable, and then
passing the number to collectFlashers via a parameter. These changes all
take place within the main method.

Find The Code:
layofland/parameters

 6 Asking the User 23

For each piece of information required, we must to do three things:

tell the user what information is being requested
get the information from the user, placing it in a temporary variable
finish getting the current line of information, preparing for the next line

We will repeat these three steps three times, once for each robot. After we
have all the information stored in the temporary variables, we can use the
variables to tell each of the robots how many intersections to visit.

When the program actually runs, the user will be asked for the
information in a separate window, called the console, shown in Figure . The
user will likely need to click on the console to bring it to the front before it
will accept input from the keyboard. After each number is typed, the user
should press the “Enter” key. If something other than a number without a
decimal point is typed, the program will give an error message and stop.

Consider the situation shown in Figure F-10 and suppose the user enters
3 for the last number. When the “Start” button is clicked, the top-most robot
will collect flashers from 40 intersections, proceeding off the right edge of the
display in the process. The middle robot will collect the flasher from (1,2),
proceed to (2,2), and turn around. The bottom robot will collect the flashers
from three intersections, and then turn around.

So what does the code to do this look like? For each of the three steps
listed earlier we would write instructions like this:

Figure F-10: Asking the user for information.

24 The Lay of the Land

System.out.print("Number of intersections karel should check: ");
int kNum = in.nextInt();
in.nextLine();

The first line uses a special object, System.out, to print a message on the
console window. The object’s print service simply prints the characters that
appear between the double quotes in its parameter.

The second line does two things. First, it creates a new temporary
variable, kNum, the number of intersections karel should check for flashers.
Then it uses an object named in to get a number from the user, putting the
number it gets into kNum. In Figure F-10 the user has entered the number 40;
the nextInt service gets this number and places it in kNum.

In the third line, the nextLine service is used to process the rest of the
line where the user entered the number 40, preparing for the next cycle of
asking for information and getting it.

These three lines of code use two objects, System.out and in.
System.out is a special object that is automatically constructed when the
program starts. It’s primary service is print. The other object, in, must be
constructed by the programmer before it is used. Its construction is similar to
the construction of Robot or City objects except that the name of the class is
Scanner:

Scanner in = new Scanner(System.in);

The Scanner class must be imported before it can be used. Include

import java.util.Scanner;

at the beginning of the file using the Scanner class.
Finally, the number stored in the temporary variable kNum can be given to

the collectFlashers method with the statement

karel.collectFlashers(kNum);

This directs karel to check 40 intersections for flashers, assuming the
interaction shown in Figure F-10.

Listing F-13 shows how to integrate this new code into the main method.

Key Idea: System.out is
used to show the user
textual information.
Key Idea: Create an
instance of TextInput to
obtain textual information
from the user.

 6 Asking the User 25

Listing F-13: A program which asks the user how many intersections each robot should
check.

 1 import becker.robots.*;
 2 import java.util.Scanner;
 3
 4 public class Main extends Object
 5 { public static void main(String[] args)
 6 {
 // This part is the same as lines 6-13 of Listing F-10
 16
 17 Scanner in = new Scanner(System.in);
 18
 19 System.out.print("Number of intersections karel should check: ");
 20 int kNum = in.nextInt();
 21 in.nextLine();
 22
 23 System.out.print("Number of intersections jasmine should check: ");
 24 int jNum = in.nextInt();
 25 in.nextLine();
 26
 27 System.out.print("Number of intersections pat should check: ");
 28 int pNum = in.nextInt();
 29 in.nextLine();
 30
 31 karel.collectFlashers(kNum);
 32 karel.turnAround();
 33
 34 jasmine.collectFlashers(jNum);
 35 jasmine.turnAround();
 36
 37 pat.collectFlashers(pNum);
 38 pat.turnAround();
 39 }
 40 }

Using System.out and a Scanner object provides many opportunities
for interactions between programs and users. A robot program might ask the
user where a robot should be placed or how many things to collect. A
banking program might ask the user how much money to transfer between
accounts or an e-mail program might ask for the address where a message
should be sent. In each of these cases, the program tells the user what
information is needed, the user types it in, and then the program reads the
information, using the services of an object such as Scanner.

This style of interaction is simple and easy to implement, but has been
superceded in many programs by windows, dialog boxes, buttons, mice, and
so on. We will, in time, learn how to interact with users via a graphical user
interface as well.

26 The Lay of the Land

7. Objects That Remember
karel was accidentally moved into a wall and has broken beyond repair.
Rather than replacing karel with a new robot, the construction company’s
management has decided that jasmine will collect the flashers from both
streets. However, because jasmine and pat are now doing significantly
different amounts of work, they must be on different maintenance schedules.
Management wants each robot to keep track of how many flashers it has
collected, printing out the number at the end of each job.

The main method shown in Listing F-13 must be modified to remove
lines 19-21 and 31-32, which refer to karel, and replace lines 34-38 with the
following. These statements direct jasmine to
¾ collect the flashers from one street,
¾ go to karel’s former street and collect flashers there, and,
¾ print out the number of flashers collected.

pat then collects flashers and also prints out the total number it collected.

jasmine.collectFlashers(jNum);
jasmine.turnLeft();
jasmine.move();
jasmine.turnLeft();
jasmine.collectFlashers(jNum);
jasmine.turnAround();
System.out.print("jasmine collected ");
System.out.println(jasmine.numFlashersCollected());

pat.collectFlashers(pNum);
pat.turnAround();
System.out.print("pat collected ");
System.out.println(pat.numFlashersCollected());

Figure F-11 shows the path the robots take when this program is run. It

also shows the console window displaying the number of flashers each robot
collected.

This program requires two changes to the Collector class. First, it must
be modified to remember the number of flashers collected. Second, a query,
numFlashersCollected, must be added to retrieve the number so it can be
printed.

At first, we may think that all we need is a temporary variable to
remember the number of flashers a robot has collected. This will not work,
however, because a temporary variable exists only as long as the service
containing it executes – then the variable and the value it contained are gone.
jasmine, however, will execute collectFlashers twice before we ask for
the number of flashers collected. A temporary variable inside
collectFlashers could not keep a running total across both uses of the
service.

 7 Objects That Remember 27

An instance variable, however, will do what we need. In many ways, an
instance variable is like a temporary variable. Both remember information
such as a number. Both kinds of variables can have the information they
store changed, perhaps by adding one to the number already stored there.
The information stored in both kinds of variables can be printed on the
console or passed as a parameter to a service.

There are, however, two crucial differences. First, a temporary variable is
temporary. It only lasts as long as the method containing it; sometimes even
less. An instance variable, on the other hand, lasts as long as the object lasts.
An instance variable in jasmine will be created when the object is created
and will continue to remember information until jasmine is no longer
needed.

Second, a temporary variable can only be used in the method where it is
created. An instance variable may be used anywhere in the class containing it.

Each object created from the class will have its own instance variable.
jasmine will have one instance variable and pat will have another. This
duplication enables jasmine and pat to each count the flashers they have
picked up, each completely independent from the other.

These three properties are crucial to solving the problem of remembering
how many flashers have been collected. First, because instance variables last
as long as the object, each time collectFlashers is called the count can
continue from where it left off the previous time. Second, because instance
variables can be used in any method in the class, we can write a separate

Figure F-11: The result of running the modified program. Arrows show the path each robot
took.

Key Idea: An instance
variable remembers
information for an object.

Key Idea: A temporary
variable remembers
information while a method
executes.

28 The Lay of the Land

method that returns the current value of the instance variable. Third, because
each object has its own instance variable, jasmine and pat can each keep
track of their own work.

Listing F-14 shows how to use an instance variable named
flasherCount to remember how many flashers have been collected. The
only differences between Listing F-14 and the previous version in Listing F-
12 are shown in bold.

Listing F-14: Modifications to Collector to remember the number of flashers collected.

 1 import becker.robots.*;
 2
 3 public class Collector extends Robot
 4 { private int flasherCount = 0;
 5
 6 public Collector(City city,int str,int ave,Direction dir)
 7 { super(city, ave, dir);
 8 }
 9
 10 public void collectFlashers(int numIntersections)
 11 { int numMoves = 0;
 12 while (numMoves < numIntersections - 1)
 13 { this.pickFlasherIfPresent();
 14 this.move();
 15 numMoves = numMoves + 1;
 16 }
 17 this.pickFlasherIfPresent();
 18 }
 19
 20 public void pickFlasherIfPresent()
 21 { if (this.canPickThing(Predicate.aFlasher))
 22 { this.pickThing(Predicate.aFlasher);
 23 this.flasherCount = this.flasherCount + 1;
 24 }
 25 }
 26
 27 public void turnAround()
 28 { this.turnLeft();
 29 this.turnLeft();
 30 }
 31
 32 public int numFlashersCollected()
 33 { return this.flasherCount;
 34 }
 35 }

The instance variable flasherCount is declared at line 4, inside the class,
but outside of all the methods. It is declared just like a temporary variable
except for the keyword private at the beginning of the line.

flasherCount starts out with a value of 0 when the robot object is
created. However, just after a flasher is picked up at line 22 the instance

 8 The Same, But Different 29

variable is incremented. Incrementing flasherCount is very similar to
incrementing the temporary variable at line 15 – except that we use the
keyword this to emphasize that flasherCount is something that belongs to
the object, much like move, turnLeft, and collectFlashers belong to the
object.

The code at lines 32-34 provide a query answering the question of how
many flashers the robot has collected so far. It is like other methods except
that it says what kind of answer it returns – an integer, abbreviated int. It
also includes an instruction to return the answer – the value contained in
flasherCount – to the client that called the query.

There are many times when an object may want to remember
information for a long time. A robot may want to remember how far it has
traveled or the location of a Thing representing a pot of gold. An object
representing a bank account will need to remember the balance for as long as
it exists. An Employee object should remember the employee’s starting date
and annual salary, no matter which of many possible services is being
executed – or even if no service is being executed at the moment.

On the other hand, if the information is only needed in a single method,
an instance variable is more power than is needed. A temporary variable is
likely a better choice.

8. The Same, But Different
The paving project is nearly complete. Workers have put up streetlights on a
number of the intersections; flashers remain on some of the rest (see Figure
F-12). jasmine and pat have been moved to a different site and three new
robots (sam, migel, and laura) are being used to turn the lights off each
morning – both the flashers and the streetlights. sam, migel, and laura are
instances of Extinguisher robots that include a service named
turnLightsOff. Like collectFlashers, turnLightsOff has a parameter
that says how many intersections the robot should visit.

To turn off a flasher, turnLightsOff could have code like this:

Flasher f = (Flasher)this.examineThing(IPredicate.aFlasher);
f.turnOff();

this.examineThing instructs this robot to examine the intersection it
occupies for a Thing. In particular, the parameter, IPredicate.aFlasher,
tells it to look for a flasher. If the robot finds a flasher on the intersection, it
assigns it to the temporary variable, f.

30 The Lay of the Land

Similar code could be used to turn off a streetlight, except that we have to
specify that we are interested in Streetlight objects.

Streetlight s =
 (Streetlight)this.examineThing(
 IPredicate.aStreetlight);
s.turnOff();

There is one restriction on this code. If the intersection does not actually

have a streetlight, the program will produce a run-time error when it tries to
turnoff the non-existent streetlight. One way to fix this problem is to use an
if statement to only execute this code if the robot is beside a streetlight.

These ideas can be combined to create a turnLightsOff method. It,
together with a helper method, are shown in Listing F-15.

The turnLightsOff method is very, very similar to the collect-
Flashers method. The difference is what happens on each intersection.
Instead of calling pickFlasherIfPresent, turnLightsOff calls the method
turnLightsOffHere.

When the turnLightsOffHere method executes, it first checks if the
intersection has a flasher. If so, the robot gets the flasher and calls its
turnOff method. Then the robot checks for a streetlight. If there is a
streetlight, the robot gets it and calls its turnOff method.

Figure F-12: Streets with two different kinds of lights, flashers and streetlights.

 8 The Same, But Different 31

Listing F-15: A first attempt at the turnLightsOff method.

 1 public void turnLightsOff(int howFar)
 2 { int numMoves = 0;
 3 while(numMoves < howFar - 1)
 4 { this.turnLightsOffHere();
 5 this.move();
 6 numMoves = numMoves + 1;
 7 }
 8 this.turnLightsOffHere();
 9 }
 10
 11 public void turnLightsOffHere()
 12 { if (this.canPickThing(IPredicate.aFlasher))
 13 { Flasher f = (Flasher)this.examineThing(
 14 IPredicate.aFlasher);
 15 f.turnOff();
 16 }
 17 if (this.canPickThing(IPredicate.aStreetlight))
 18 { Streetlight s = (Streetlight)this.examineThing(
 19 IPredicate.aStreetlight);
 20 s.turnOff();
 21 }
 22 }

It is no coincidence that flashers and streetlights are both turned off with
a method named turnOff. Recall from Section 1 that we extended the
Robot class to create a new kind of robot, a Collector. A Collector robot
had all of the methods a regular Robot has: move, pickThing, putThing,
and so on. It was also customized to include a new method, collect-
Flashers.

Flasher and Streetlight both extend the class Light. The Light
class contains the methods turnOn and turnOff. The Flasher and
Streetlight classes both inherit these methods. Just as a Collector robot
can move, thanks to the move method inherited from Robot, a Flasher and a
Streetlight can be turned on or off, thanks to the turnOn and turnOff
methods inherited from Light.

Looking at these classes another way, Flasher and Streetlight are
both a kind of Light. Therefore, they must be able to be turned on and off.

This yields an interesting idea. Perhaps we can instruct the robot to
examine the intersection for a light. Not a flasher, in particular, nor a
streetlight in particular, but just a light.

32 The Lay of the Land

Light lite = (Light)this.examineThing(IPredicate.aLight);
lite.turnOff();

This, in fact, does work. The eight lines of code in the

turnLightsOffHere method, shown in Listing F-15, can be cut to just four
lines, as shown in Listing F-16.

In some ways, it is surprising that this code works. After all, there are
differences between streetlights and flashers. When a Streetlight is on, it
just shines gently. When a flasher is on, it flashes insistently. It seems
reasonable that these differences in behavior would result in differences in the
turnOff methods – a streetlight would turn itself off differently than a
flasher would turn itself off.

This is the case. The definition of turnOff for a Streetlight is

 public void turnOff()
 { this.setIcon(this.offIcon);
 }

while the definition of turnOff for a Flasher is

 public void turnOff()
 { FlasherIcon fi = (FlasherIcon)this.getIcon();
 fi.stop();
 this.on = false;
 }

Java allows a class to override methods in the class it extends. Flasher

can replace the turnOff method inherited from Light with its own version,
as can Streetlight. Then, when the statement

lite.turnOff();

is executed, lite might be a Flasher object or lite might be a
Streetlight object. But it doesn’t matter. Each object will use its own
turnOff method. A Flasher will turn off one way; a Streetlight will
turn off another way. They are the same – they both turn off – but they are
also different – they turn off in different ways. This concept of having the
same service behave differently, depending on the class, is called polymorphism.

Listing F-16: Turning off lights instead of turning off flashers and streetlights.

 1 public void turnLightsOffHere()
 2 { if (this.canPickThing(IPredicate.aLight))
 3 { Light lite = (Light)this.examineThing(IPredicate.aLight);
 4 lite.turnOff();
 5 }
 6 }

 9 Collections 33

Polymorphism is useful when you have different kinds of objects that
need to perform variations of the same basic action. For example, you might
have two different kinds of dancing robots. A left-dancing robot moves to
the left, forward, and then back to the right when sent the move message. A
right-dancing robot moves to the right, forward, and then to the left when it
moves. Both respond to the move message, but move differently.

As another example, consider an Employee class that is extended in two
different ways: HourlyEmployee and SalariedEmployee. Every Employee
should have a calcWages method, but HourlyEmployee and
SalariedEmployee calculate the answer differently. Fortunately, the code

Employee e = (Employee)this.getNextEmployee();
e.calcWage();

will use the correct calculation no matter if e is an HourlyEmployee or a
SalariedEmployee.

Or, consider programs such as Windows Media Player or RealPlayer that can
play downloaded music or videos. If the user selects a music file, the play
method in the Music class is executed. If the user selects a video file, the
play method in the Video class is executed. This could be implemented by
having Music and Video both extend a class named Media, which has a play
method. Then, no matter what kind of media the user has selected, the lines

Media selected = (Media)this.getUsersSelection();
selected.play();

will cause the right play method to be executed. Thanks to polymorphism,
each object can execute a method in an appropriate manner without the client
even needing to know what kind of object it is. Polymorphism allows the
code calling a method to treat objects in the same way, even if the objects
belong to different classes.

9. Collections
The original paving job is finished and the construction company has landed
another contract. This time the contract is much larger – a huge subdivision
consisting of fifty streets. As before, robots are required to collect the
flashers from the intersections each morning.

Working with fifty robots on fifty streets raises two issues. First is the
tedium of coming up with the names for fifty robots. Second is the large
amount of code that is exactly the same except for the name of the robot
involved.

Using only the techniques we have learned so far, the main program
would have to be written as shown in Listing F-17.

34 The Lay of the Land

Listing F-17: A naïve program directing 50 robots to collect flashers on 50 streets.

 1 import becker.robots.*;
 2
 3 public class Main
 4 {
 5 public static void main(String[] args)
 6 { ConSite site = new ConSite();
 7
 8 Collector worker_0 =
 9 new Collector(site, 1, 1, Direction.EAST);
 10 Collector worker_1 =
 11 new Collector(site, 2, 1, Direction.EAST);
 12 Collector worker_2 =
 13 new Collector(site, 3, 1, Direction.EAST);
 14 ... // many workers omitted
 15 Collector worker_48 =
 16 new Collector(site, 49, 1, Direction.EAST);
 17 Collector worker_49 =
 18 new Collector(site, 50, 1, Direction.EAST);
 19
 20 worker_0.collectFlashers();
 21 worker_0.turnAround();
 22 worker_1.collectFlashers();
 23 worker_1.turnAround();
 24 worker_2.collectFlashers();
 25 worker_2.turnAround();
 26 ... // many workers omitted
 27 worker_48.collectFlashers();
 28 worker_48.turnAround();
 29 worker_49.collectFlashers();
 30 worker_49.turnAround();
 31 }
 32 }

Using numbers in the names of the robots makes the similarity of many
lines obvious. One might wonder if we can make use of all that similarity.

If fact, we can. There are various ways to collect many objects, such as
robots, together. The result is called a collection. Collections are used by giving
the name of the collection together with a number. For example, suppose the
collection is named workers and already contains the fifty robots. Then the
fifth robot could be told to collect flashers and turn around with the
following code:

Collector worker = (Collector)workers.get(5);
worker.collectFlashers();
worker.turnAround();

This doesn’t seem to be useful until we realize that the 5 can be replaced

with a variable. If we put these three lines inside a loop that counts from 0 to

 9 Collections 35

49, then 50 robots will collect flashers and then turnaround! All with just the
following 7 lines of code (instead of the 100 required in Listing F-17).

int workerNum = 0;
while (workerNum < 50)
{ Collector worker = (Collector)workers.get(workerNum);
 worker.collectFlashers();
 worker.turnAround();
 workerNum = workerNum + 1;
}

The beauty of this approach is that 1,000 robots could be told to collect

flashers with the same seven lines of code. Only the 50 in the second line
would need to change.

Collections are often used in programs. Each robot uses a collection to
implement its “backpack” and the City class uses a collection to manage all
the things it contains – robots, walls, flashers, and so on. Programs used at a
bank use collections to keep track of all the different Account objects and
payroll programs use collections of Employee objects. Word processors use
collections to store many Paragraph objects and all the words in the spelling
checker’s dictionary.

Any time a program must use many similar objects or similar pieces of
information, a collection is probably being used.

Key Idea: Collections are
used when lots of similar
information must be
managed.

