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Rational Functions (§3.3):
Key Points:

· Finding the domain of a (rational) function

· 'Initial state' vs. 'lowest terms': initial for domain, 'lowest terms' for vertical asymptotes

· Asymptotes: vertical (zeros of the denom), horizontal/oblique (long division)
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p, q are polynomial functions

q doesn’t always produce zero

Domain: all real numbers, except those real numbers that cause q to produce 0’s

lowest terms: if p & q don’t have any factors in common, then f is in lowest terms

Note that while you can cancel out common factors,  you need to figure out the domain based on the original function definition, since removing a factor from the denominator will (appear to) remove a zero (and thus remove a restriction on the domain)
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It’s an even function

(f(-x) = f(x), therefore it’s symmetric about the y axis)

No y-intercept (0 isn’t in the domain – we can’t use 0 for x)

No x-intercept (no value of x produces 0)

(Draw in the asymptotes along the axes)

(Introduce the term asymptote to describe these – lines that the function approaches, but never actually reaches)
It’s got that characteristic graph:

Explain the idea of limit: as x approaches 0, f(x) gets larger and larger
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You can do transformations of this, as well:
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ICE: Domain, transformations of 1/x2
Definition of an asymptote: Given a function R:

If, as x(∞ or x( -∞, R(x) approaches some fixed number L, but never actually reaches L, then the horizontal line y = L is a horizontal asymptote of the graph of R

If, as x approaches some number c, 
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, then the vertical line x = c is a vertical asymptote of the graph of R

oblique asymptote: A line that’s neither horizontal, nor vertical, yet is an asymptote

To Find Vertical Asymptotes:
1. Reduce the rational function to lowest terms

a. If you don’t do this, YOU’LL GET THE WRONG ANSWERS!!

b. Intuitive explanation about why you need lowest terms: for a vertical asymptote (x = c), as x gets closer and closer to c, you’ll end up with a smaller and smaller fraction, which is flipped-over in order to get a larger and larger number, thus the asymptote. (This reasoning can be flipped around the X-axis if the term is negative().  However, common terms above/below will cancel out, thus not causing an asymptote.

c. Note that the graph is undefined at the zeros of the denominator function (there’s a hole there) – rational functions aren’t necessarily continuous.

2. Find the zeros of the function in the denominator

3. At each zero will be located a vertical asymptote

<Exercises>

To Find Horizontal Asymptotes:
1. If the degree of the numerator is lower than the degree of the denominator, then the function is said to be a proper rational function, and it’ll have a horizontal asymptote at y = 0

2. If not, then we’ll use long division to rewrite 
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Since 
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 will be a proper function, it’ll go to zero as x ( ∞, and thus we can focus on f(x), instead.  We’ll have three cases:

a. 
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 - since it’s constant, y = b is a horizontal asymptote

b. 
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- an oblique asymptote

c. f(x) is something else – R approaches f, but there aren’t any horizontal/oblique asymptotes
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